
AND ! NAS TN -755

NASA TECHNICAL NOTE NASA TN D-7551

(NASA-TN-D-7551) PRELIMINARY PEEFORMANCE N74-18677
ES"IIATES OF A HIGHLY MANEUVERABLE
REMOTELY PILOTED VEHICLE (NASA) p

I HC $4.50 t CSCL 01C Unclas
H_ _1/02 32761

PRELIMINARY PERFORMANCE ESTIMATES

OF A HIGHLY MANEUVERABLE

REMOTELY PILOTED VEHICLE

by Walter P. Nelms, Jr., and John A. Axelson

Ames Research Center

Moffett Field, Calif. 94035

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION * WASHINGTON, D. C. * FEBRUARY 1974



1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

D-7551

4. Title and Subtitle 5. Report Date
February 1974

PRELIMINARY PERFORMANCE ESTIMATES OF A HIGHLY February 1974

MANEUVERABLE REMOTELY PILOTED VEHICLE

7. Author(s) 8. Performing Organization Report No.

Walter P. Nelms, Jr., and John A. Axelson A-5157

10. Work Unit No.

9. Performing Organization Name and Address 791-94-0401

11. Contract or Grant No.
NASA Ames Research Center
Moffett Field, Calif. 94035

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Note

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, D. C., 20546

15. Supplementary Notes

16. Abstract

A computerized synthesis program has been used to assess the effects of various vehicle and mission parameters on the

performance of a highly maneuverable remotely piloted vehicle (RPV) for the air-to-air combat role. The configuration

used in the study is a trapezoidal-wing and body concept, with forward-mounted stabilizing and control surfaces. The

study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return

cruise. Performance is evaluated in terms of both the required vehicle weight to accomplish this mission and combat

effectiveness as measured by turning and acceleration capability. The report describes the synthesis program, the mission,

the vehicle, and the results of sensitivity and trade studies.

An optimization process has been used to establish the nominal RPV configuration, which exhibits relatively high

levels of combat maneuvering performance while being relatively light in weight as compared to advanced manned fighters.

This nominal configuration is then used as a base point for sensitivity studies to determine the vehicle- and mission-

oriented parameters that have the most significant effect on the RPV weight and combat performance. Variations were

made in vehicle geometry, aerodynamics, component weights, and mission parameters such as cruise altitude and Mach

number, combat altitude and Mach number, range, and number of combat maneuvers. The effects of some 30 vehicle and

mission parameters are included. Areas in which further study is needed or where possible payoffs can result from

advancement in technology are suggested.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Remotely Piloted Vehicles Aircraft Performance

Highly Maneuverable Aircraft Air Combat Aircraft Unclassified - Unlimited

Aircraft Synthesis
Aircraft Systems Analysis

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 100 $3.75

* For sale by the National Technical Information Service, Springfield, Virginia 22151



TABLE OF CONTENTS

Page

SYMBOLS ...... ....... .... . . ... ................. .
SUMMARY .... . ... . . ........................

INTRODUCTION .................. ................. 1

MISSION DESCRIPTION - (Fig. 1) ... . ......... . . . ... . . . . . . . . .. 2

VEHICLE DESCRIPTION - (Fig. 2) ........................ 3
METHODS OF ANALYSIS 4

Synthesis Program - (Fig. 3) ......................... 4
Control program ............................... 4
Geometry module ...................... ........... 4
Aerodynamic module ............................. . . 4
Propulsion module . .............................. 5
Trajectory module .............................. 5
Structures module . .............................. 5
Weights module ............................... 6
Optimizer . ............ ............ .......... 6

Design Philosophy ................................ 6
RESULTS ....................................

Form of the Results . . .. . . . . . . . . . . . . . .. . .. . . . . . 7

Vehicle weight . . . . . . . . . . . • .. . . . . . . . . . . . . . . . . .. 7

Vehicle combat performance .................. 7
Sensitivity factors ............................... 8

Nominal Configuration - (Fig. 5 and Table 1) . . . . . ................... 8

Vehicle Parameter Sensitivities ........ .... . . . . . . . . . . . . . . 9

General - (Figs. 4, 6-7) . . . . . . . ... . . . . . . . . . . . . . .. 9

Geometry - (Figs. 8-17) ..... . .... ....... .. ..... .... 10

Aerodynamics - (Figs. 18-21).... .. . . . . .................... 12

Weights - (Figs. 22-25) . .......................... 12
Mission Parameter Sensitivities. .. .... 13

Cruise altitude and Mach number - (Figs. 26-27) ..... . . . . . . . . .... . .13

Combat altitude and Mach number - (Figs. 28-30) .... . . . . . . . . . . . . . 14

Combat range and maneuvers - (Figs. 31-32) . . . . . . . ... . . ....... . 15

Sensitivity Factors - (Table 2) . ......................... 15
CONCLUDING REMARKS . .......................... 16
REFERENCES ...... ... .......... ... ............ 18

TABLES . . . . . . . . . . . . . . . . .. . . . . . . . ... .. . . . . . . 19
FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . ... .. . .... 21

PRECEDING PAGE BLANK NOT FILMED

iii



SYMBOLS

A? aspect ratio

b span, m (ft)

CD drag-due-to-lift coefficient, drag due to lift
CL qS

CDo zero-lift drag coefficient, zero-lift drag
o qS

CD weapons drag coefficient, weapons drag
°W qS

CL lift coefficient, lift
qS

d fuselage diameter, m (ft)

D drag

1 fuselage length, m (ft)

L lift

M free-stream Mach number

NZ  load factor, L + T sin a

NZi maximum instantaneous load factor

NZS sustained load factor

NZult  ultimate load factor

PS specific power,(Tcosa -D V, m /sec (ft/sec)

PSlg specific power at one g flight condition (0 = 0), m/sec (ft/sec)

PS specific power at maximum instantaneous turn rate, m/sec (ft/sec)

q free-stream dynamic pressure

S wing planform area, m2 (ft2 )

SC canard planform area, m 2 (ft2 )

V
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T thrust

t
c thickness-to-chord ratio

T thrust-to-weight ratio (launch)

V free-stream velocity, m/sec (ft/sec)

W weight, kg (lb)

Wg,WGTO gross weight (launch), kg (lb)

W wing loading (launch), kN/m 2 (lb/ft2 )

a angle of attack, deg

Sturn rate, deg/sec

0i maximum instantaneous turn rate, deg/sec

bs  sustained turn rate, deg/sec

A leading-edge sweep, deg

X taper ratio

vi



PRELIMINARY PERFORMANCE ESTIMATES OF A HIGHLY

MANEUVERABLE REMOTELY PILOTED VEHICLE

Walter P. Nelms, Jr., and John A. Axelson

Ames Research Center

SUMMARY

A computerized synthesis program has been used to assess the effects of various vehicle and

mission parameters on the performance of a highly maneuverable remotely piloted vehicle (RPV)

for the air-to-air combat role. The configuration used in the study is a trapezoidal-wing and body

concept, with forward mounted stabilizing and control surfaces. The study mission consists of an

outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return

cruise. Performance is evaluated in terms of both the required vehicle weight to accomplish this

mission and combat effectiveness as measured by turning and acceleration capability. The report

describes the synthesis program, the mission, the vehicle, and the results -of sensitivity and trade

studies.

An optimization process has been used to establish the nominal RPV configuration, which

exhibits relatively high levels of combat maneuvering performance while being relatively light in

weight as compared to advanced manned fighters. This nominal configuration is then used as a base

point for sensitivity studies to determine the vehicle- and mission-oriented parameters that have the

most significant effect on the RPV weight and combat performance. Tradeoffs were made in vehicle

geometry, aerodynamics, component weights, and mission parameters such as cruise altitude and

Mach number, combat altitude and Mach number, range, and number of combat maneuvers. The

effects of some 30 vehicle and mission parameters are included. Areas in which further study is

needed or where possible payoffs can result from advancements in technology are suggested.

INTRODUCTION

There has been an increased interest in the use of remotely piloted vehicles (RPV) to comple-

ment or replace manned aircraft for several military missions. Modified drone aircraft are presently

being operated as RPVs for reconnaissance and electronic warfare missions, and these same types of

vehicles are being tested in the air-to-ground strike role. Several new configurations are under

development, particularly for the rcconnaissance missions. In addition, preliminary studies are being

conducted on more advanced configurations for both the reconnaissance mission and the air super-

iority role. This latter mission is somewhat more long term because of its greater technology

requirements, and therefore is not receiving as much attention as the more near-term missions.

Realization of an operational RPV for the air combat role will require technology advance-

ments and cost reductions in many areas such as sensors, avionics, data links, airframe and
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propulsion systems, control stations, and operational procedures. Nevertheless, it may well be that
the next generation of air-to-air combat aircraft, beyond the advanced manned fighters now under
development, will employ remote piloting technology. Such aircraft offer many advantages over
manned aircraft, including increased maneuverability due to the absence of an onboard pilot,
possible cost benefits to accomplish a given mission, and, obviously, the saving of human lives.

To strengthen the technology base required for the development of an RPV, the NASA-Ames
Research Center has undertaken a research program focusing on a highly maneuverable RPV for the
air-to-air combat role. One phase of the program is a computerized systems study of several config-
urations to identify critical areas where significant performance improvement may result from
additional research. A computerized aircraft synthesis program (ACSYNT) has been used to assess
the effects of various vehicle and mission parameters on the performance of a highly maneuverable
RPV for the air-to-air combat role. This report is confined to a relatively conventional wing-body-
canard concept. The study mission consists of an outbound cruise, an acceleration phase, a series of
subsonic and supersonic turns, and a return cruise. Performance is evaluated in terms of both the
required vehicle weight to accomplish this mission and the combat maneuverability of the resulting
configuration. The report describes the selected mission, vehicle, and synthesis program, together
with results from sensitivity and trade studies.

MISSION DESCRIPTION

There are many combinations of range and maneuvers required by an air-to-air combat vehicle.
For purposes of the present study, a typical offensive mission, shown schematically in figure 1, was
chosen. This nominal mission consists of a climb phase, a cruise phase, and a combat phase. The
RPV, carrying a payload of two infrared missiles of the Sidewinder class, is ground launched using
either a zero-length rocket assist technique or a catapult system. (Another possibility would be
launch from an aircraft.) Following launch, the RPV climbs and accelerates to a cruise altitude of
13,716 m (45,000 ft) and then cruises to a combat range of 370 km (200 n.mi.) at 0.9 Mach number
and at a constant altitude of 13,716 m (45,000 ft).

On reaching the combat area, the RPV performs the following series of maneuvers at an
altitude of 9,144 m (30,000 ft) using maximum power:

An acceleration from M = 0.9 to 1.6
Three 3600 PS = 0 turn at M = 1.2
Four 3600 PS = 0 turns at M = 0.9

The RPV then cruises 370 km (200 n.mi.) back to its base, descends, and is recovered on the ground
using a net or arresting gear and pad. (Details of the launch and recovery systems are beyond the
scope of this report.) As a conservative measure in evaluating vehicle weight, the two missiles are
not launched but are brought back to the base, resulting in a heavier vehicle for the return trip and
therefore greater fuel consumption than if the weapons had been expended. The fuel used for all
the various phases of the mission is then summed and the required gross weight vehicle is deter-
mined from the synthesis program.
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The sensitivity of the vehicle weight and combat performance to the cruise altitude, cruise

speed, combat range, combat altitude, and combat speed is discussed in a later section of the report

as are the effects of a reduction in the number of combat turns.

VEHICLE DESCRIPTION

The RPV configuration discussed here is a relatively conventional wing-body-canard concept.

Figure 2 presents a schematic of the nominal configuration along with the vehicle geometry and

weight statement.

The engine used in the RPV configuration is a study turbojet with afterburner (ref. 1). A fixed

geometry normal shock air induction system is employed with the inlet located beneath the fuselage

(fig. 2). Weights of the engine, afterburner, engine controls, fuel system, and inlet system are

included under "propulsion" in the weight statement. A gross weight of 2460 kg (5425 lb) is

required to accomplish the nominal mission.

The fuselage is of conventional aluminum structure, and is sized to contain the propulsion

system, the total fuel supply, and the avionics and electrical equipment. An electro-optical sensor

system located in the vehicle nose accounts for its rather blunt shape. The trapezoidal-planform

wing consists of conventional aluminum structure and contains no fuel or equipment (except

control actuators and payload attachments).

The study configuration employs control configured vehicle (CCV) and fly-by-wire concepts,

and the forward-mounted canard and vertical stabilizing and control surfaces are intended to be

representative of these advanced systems. The canard is sized (in conjunction with the fore and aft

location of the wing) to give a zero static margin with a full fuel load. The vertical surface of the

nominal configuration is sized at 10 percent of the wing reference area; the sensitivity of vehicle

weight to changes in size of this surface is determined in a later section.

The exact weight of the fixed equipment required for this mission (e.g., avionics, electrical

systems, sensors) is difficult to assess at this time; based on current technology a nominal weight

allowance of 227 kg (500 lb) is used. The vehicle payload consists of two infrared seeking missiles

of the Sidewinder class weighing 145 kg (320 lb) and mounted under the wings. Note that the

weights of payload attachments and residual fuel and oil are included under "residual load" in the

weight statement.

The effects on weight and performance of varying many of the vehicle characteristics about

the nominal configuration are shown in a later section. These characteristics include wing loading,

thrust-to-weight ratio, load factor, wing geometry, aerodynamic performance, fixed equipment

weight, and weapon systems weight.
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METHOD OF ANALYSIS

Synthesis Program

The computerized synthesis program used in the RPV study is the latest version of the
NASA-Ames program for aircraft synthesis (ACSYNT). Figure 3 is a block diagram of this modular-
ized program. Each module consists of one or more subroutines, which are described below as they
apply to the RPV study. The ACSYNT program provides geometrical, mass, and performance
information for a vehicle concept as well as sensitivity information.

Control program- The control, or executive, program controls the sequence and information
transfer for all the other modules, and handles the input to and output from the entire synthesis
program. Limits of the various program loops and number of passes through the program for any
one configuration are also set by this subroutine.

Inputs include various vehicle definition parameters, mission specification, and several initial
assumptions required to start the program. Outputs from the program include vehicle characteristics
required to accomplish the input mission, such as component weights and geometry, fuel require-
ments for the various phases of the mission, aerodynamic and propulsion system characteristics of
the configuration, and combat performance parameters. Both data listings and computer graphics
presentations may be used to display the results.

Geometry module- Based on input configuration parameters, some fixed and some assumed,
the geometry module defines and sizes a vehicle to be used in the remaining parts of the program.
The fuselage, engine, wing, and canard surface are initially sized in this module. The characteristics
of these components are updated at each pass through the program. The fuselage is sized to contain
the propulsion system; the entire fuel supply, and the fixed equipment, while the wing is sized on
the basis of an input wing loading and shape parameters. In addition, the geometry module contains
a section that calculates vehicle weight and balance on the basis of a specified static margin and tail
volume coefficient. These later two parameters are varied in the sensitivities studies.

Aerodynamics module- This module consists of a procedure to calculate the aerodynamic
characteristics of a configuration for a given mission altitude and Mach number. The aerodynamic
characteristics of the wing-mounted missiles are also estimated. The calculation procedures employ
both theoretical methods and empirical information, and have been calibrated with existing wind-
tunnel data for similar configurations to high angles of attack.

The friction drag estimates are based on Frankl and Voishel's extension of von Karman's
mixing-length hypothesis to compressible flow (ref. 2), and an empirical correction for thickness-
induced pressure fields derived from a correlation in reference 3 of a large amount of data. At
subsonic speeds, the zero-lift drag level is increased by an appropriate form factor. For transonic
speeds, an estimate is made of the wing drag accounting for separation as a function of angle of
attack and shock location.

The fuselage wave drag (M > 0.9) is based on a Sears-Haack equation (ref. 4), which is a
function of body length and diameter. This value is corrected for the blunt nose associated with the
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electro-optical sensor system. Wave drag on the wing and stabilizing surfaces near Mach 1 is calcu-
lated by a modified empirical procedure from reference 3 obtained by a correlation of a wide
variety of wing data. At Mach numbers equal to or greater than the shock attachment Mach

number, the wave drag is estimated by linear supersonic theory modified for detached shock waves
on rounded leading edges. Both the body and wing wave drag estimates have been calibrated against
results generated by the wave drag program of reference 5.

The lift and drag due to lift are calculated for angles of attack from zero to beyond maximum
lift using a nonlinear theory currently under development at Ames. This theory is derived from
momentum integrations for a flow model using a disturbance-velocity gradient from potential
theory. Results from this procedure have been calibrated with wind tunnel data on configurations
similar to the study RPV.

The drag of the weapons and attachments is calculated using an empirical relationship that is a
function of Mach number and missile size. This method is based on a correlation of data obtained in
the wind tunnel for similar missiles and methods of attachment.

Propulsion module- The propulsion section of the synthesis program uses an engine similar to
the study engine of reference 1. The engine is a turbojet with afterburner and has a maximum
turbine inlet temperature of 19000 F. A four-stage compressor is driven by a single-stage turbine,
and the compressor pressure ratio at sea level static conditions is 5 to 1. On the basis of a specified
vehicle thrust-to-weight ratio, the propulsion subroutine sizes an engine and afterburner, and calcu-
lates its sea-level static performance and weight. Then, the values of thrust, fuel consumption, and
air flow are calculated for any altitude, Mach number, and power setting. The following power
settings are available: maximum afterburning, intermediate (100 percent rpm), maximum continu-
ous, and 90, 70, and 50 percent maximum continuous. The latter power settings are used for
throttling during the cruise phase. The basic engine thrust and fuel consumption are corrected for
installation losses associated with the inlet and nozzle. The propulsion system characteristics have
been programmed to allow the use of a wide range of engine sizes, power settings, altitude, and
Mach numbers.

The engine characteristics are state of the art, and no performance improvements have been
used that might be considered advanced propulsion system technology. Since the propulsion system
has a significant effect on the size, weight, and performance of the RPV, technology advancements
in this area are certainly important, particularly in terms of system cost.

Trajectory module- This module computes a vehicle trajectory for the specified mission from
information generated in the aerodynamic and propulsion modules. The trajectory consists of
climb, cruise, acceleration, and combat maneuvering segments. The amount of fuel used for each

phase of the mission is calculated, thus establishing the total fuel requirement. In addition, combat
performance parameters for the vehicle are determined at both supersonic and subsonic Mach
numbers. These parameters are specific power levels and/or turn rate capability for zero turn rate,
sustained turning, and maximum instantaneous turning maneuvers. These performance parameters
are explained in a later section.

Structures module- After vehicle sizing, the structural weight is calculated in this module. The

procedures used are based on correlations of existing data. resulting in empirical equations for the

weights of the various vehicle components. The wing and canard weights are a function of load
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factor, aspect ratio, leading-edge sweep, taper ratio, thickness-to-chord ratio, and structural
material. Load factor, length, and diameter are the parameters used in calculation of the fuselage
weight. Methods similar to those described in references 6 and 7 have been used as a guide in
developing the structures module. Wherever possible, the results have been calibrated against the
weights of actual aircraft components of similar configurations, or with results from more elaborate
prediction methods.

Weights module- This module calculates the weights of the remaining components by
empirical methods, and uses them with data generated in other modules to compile a total vehicle
weight statement. The subroutine then determines if the resulting gross weight meets the input
mission requirements. If the vehicle is either too light or too heavy, the entire synthesis program is
recycled until an acceptable weight is reached.

Optimizer- Two types of tradeoff studies are used. Generally, the effect on vehicle perfor-
mance of varying a single parameter individually (all others held constant) is assessed, and a weight
or performance sensitivity factor for the parameters in question is determined. This procedure
comprises the greater portion of the results. There are a few instances, however, when it is desirable
to determine the optimum combination of several parameters to maximize or minimize a pre-
selected measure of vehicle performance subject to prescribed bounds on the vehicle and mission
parameters. For these cases, an optimizing module is coupled to the synthesis program. The optim-
ization algorithm is based on Zoutendijk's method of feasible directions; the method and computer
program are described in references 8 and 9.

Design Philosophy

There are varied opinions as to the philosophy of design for a superior aircraft in air-to-air
combat. For example, the designer may choose to provide high acceleration or high Mach number
capability as contrasted to a lower speed design with greater maneuverability. Consideration must
also be given to other factors such as the weapon system capability and operational environment of
a threat aircraft. Because of the differing philosophies a brief description of the approach used in
the present study may be in order before, proceeding to the results.

There are several, often conflicting, performance objectives for a low-cost RPV for air super-
iority. The design philosophy for the combat RPV in this preliminary study is to minimize gross
weight while maintaining a turning performance advantage over future threats, and to accept the
acceleration capability of the resulting designs. A level of maximum instantaneous turn rate or
maximum load factor capability is provided such that the level of performance is considerably
higher than that of any known or planned manned fighter but is low enough to keep the structural
weight and therefore vehicle gross weight and cost to reasonable values.

Also, the sustained turn rate capability at M = 0.9 is selected to provide a reasonable incre-
ment over that of any advanced aircraft; experience has shown that high-maneuvering engagements
tend to occur at high subsonic speeds due to the fact that both the sustained and maximum
instantaneous turn rates usually are a maximum here (ref. 12). Sustained turn rate is an improtant
factor because of its strong effect in determining the vehicle propulsion system size. A relatively
modest level of sustained turn rate is chosen for the nominal configuration to keep the resulting
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thrust-to-weight ratio and therefore the engine and vehicle cost relatively low. However, the acceler-

ation capability of the vehicle is a function of the available thrust, and a lower thrust-to-weight ratio

will results in lower acceleration capability. A reduced level of acceleration performance may be

acceptable for the present vehicle, since defensive breaks followed by high speed dashes to escape an

opponent (for pilot or aircraft safety) may be less critical for an RPV. Therefore, the defensive

ability of the RPV under study is given little consideration, with superior offensive capability being

the primary objective. Note that if an adversary with a superior acceleration capability is fortunate

enough to use this advantage to make a successful escape, the mission of the combat RPV - that is,

to gain control of the airspace - is still essentially accomplished.

RESULTS

Form of the Results

The majority of the sensitivity results are presented in three forms: the effects on vehicle

weights of variations in specified parameters; effects of various parameters on vehicle combat

pertormance; and sensitivity factors derived from the weight and performance characteristics.

Vehicle weight- The effect on vehicle weights of varying a specific vehicle or mission param-

eter is presented in the format of figure 4(a), where wing loading is the parameter illustrated.

Structural weight, propulsion system weight, and fuel weight (all in kilograms (lb)) are given along

with the vehicle gross weight. A sketch, on the same figure, indicates effects of changes in the

parameter on vehicle size and shape. Generally a sketch is shown on each plot for configurations

with the maximum, minimum, and nominal values of the parameter. These sketches are all to a

common scale to allow a quick comparison of vehicle sizes and shapes as. a result of changes in

configuration and mission parameters. The nominal configuration is usually identified by either

filled symbols or by tic marks.

Vehicle combat performance- Effects on vehicle combat performance of changes in a partic-

ular parameter are presented as in figure 4(b), where performance is measured, for a given Mach

number and altitude, in terms of specific power (PS) in meters per second (ft per sec) plotted versus

turn rate (b) in degrees per second. There are three important areas on these performance plots that

should be described.

First, the PS level at zero turn rate (PS g) indicates the vehicle's acceleration or rate of climb

capability. This is important in the prepositioning phase of the engagement before the adversaries

are in close contact and a margin in PS at 1 g can be used to gain a speed or altitude advantage over

an opponent. Also, an acceleration advantage can be important (particularly for a manned aircraft)

for defensive purposes or escape. Second, the PS = 0 point is the maximum sustained turn rate

capability of a vehicle and involves neither a loss nor a gain in vehicle energy. A given nunber of

maneuvers to be performed at PS = 0 are specified in the input mission.

The final important area on the performance plot is the maximum instantaneous turn

rate capability of a vehicle which is usually accomplished at the expense of large losses in

vehicle energy (negative specific power). For manned aircraft, the maximum instantaneous turn rate
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often is limited by pilot tolerance. For the present study of RPVs, the vehicle is allowed to
maneuver to its design load factor or lift limit (whichever occurs first) since there is no pilot
onboard the aircraft. In several cases, the combat performance presentation includes a second figure
(fig. 4(b) concluded), which supplements the plots of PS versus turn rate. Such a figure usually is
included when a parameter appears to have a large effect on both the vehicle weight and combat per-
formance. References 10-12 provide a complete ciscussion of the implications of specific power and
turn rate in air-to-air combat.

Sensitivity factors- Results of the trade studies are summarized in terms of sensitivity factors
for both the weight and combat performance characteristics. A sensitivity factor is defined herein as
the percentage change in gross weight or performance resulting from a percentage change in the
design parameter divided by the.percentage change in the design parameter. The sensitivity factors
are calculated about the parameter values of the nominal configuration. Using a gross weight (Wg)
trade as an example, the sensitivity factor would be defined as follows:

change in W /nominal value of W
sensitivity factor =

change in parameter/nominal value of parameter

where the parameter may be WIS, T/W, etc. The sensitivity factor may be positive or negative (or
0); if positive, the vehicle gross weight or performance increases as the parameter value increases.
The magnitude of the effect that a given design parameter has on the vehicle weight or performance
is indicated by the magnitude of the sensitivity factor.

Nominal Configuration

A nominal configuration to be used in the sensitivity and trade studies is established in this
section. In accord with the design philosophy outlined earlier, an ultimate load factor of 11 is
selected as giving a reasonable structural weight while allowing sufficient combat performance over
that of any planned manned fighter. For this value, with the optimizer coupled to the synthesis
program, minimum gross weight (W ) vehicles are obtained for a range of sustained turn rates at
M = 0.9 for the nominal mission. This is accomplished at each value of 0 by allowing the optimizer
to select the optimum combination of wing loading (WIS), thrust-to-weight ratio (T/W), wing
thickness-to-chord ratio, wing sweep, and wing taper ratio, while holding all other values constant.
These parameters had been expected to have significant effect of vehicle weight and combat perfor-
mance.

The results of the optimization process are presented in figure 5. Figure 5(a) shows the mini-
mum vehicle weights as a function of sustained turn rate (and the corresponding sustained load
factor) at M = 0.9. The results show that in order to provide greater sustained turn rate capability
for a given value of maximum load factor the gross weight of the vehicle increases. Figure 5(b)
indicates the values of the vehicle parameters associated with the minimum gross weight configura-
tions. Higher values of turn rate are accomplished when the vehicle wing loading decreases, thrust-
to-weight ratio increases, and the wing sweep is lowered, whiie only minor changes occur in wing
taper and thickness-to-chord ratios.

The combat performance at 9144 m (30,000 ft) is presented in figure 5(c) for the optimized
vehicles with sustained turn rates corresponding to the circled numbers in figure 5(a). Increases in
sustained turn rate are seen to result in increases in PS levels for 1 g flight (zero turn rate) and less
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negative values of PS for maximum instantaneous turn rate. The values of maximum turn rate of

22.60 and 16.70 per sec at M = 0.9 and 1.2, respectively, are a result of the ultimate load factor of

11 selected for the nominal configuration. The combat results are presented in greater detail in

figure 5(c) concluded, for M = 0.9 and 1.2. For the sustained turn rates considered, the optimized

configurations have maximum angles of attack (limited by load factor) ranging up to about 210.

These relatively low angles primarily are a result of the low wing loadings and the combat altitude of

9,144 m (30,000 ft). The acceleration times from M = 0.9 to 1.6 are seen to vary between about 72

to about 78 sec for the various configurations.

The configuration selected as nominal is indicated in figure 5 by tic marks and the circled

number 2. A schematic of the nominal configuration is shown in figure 2 along with geometry and

weight characteristics of the vehicle. Table 1 lists values of combat performance and summarizes the

fuel usage and times required for various legs of the mission. As indicated in figure 5(a), a consider-

able increase in vehicle gross weight is required to obtain the desired turn performance. The wing

loading and thrust-to-weight ratio at launch for the nominal configuration are seen to be

2.11 kN/m2 (44 lb/ft2 ) and 1.11, respectively (fig. 5(b)), and, as a matter of interest, the values at

the beginning of combat are 1.87 kN/m2 (39 lb/ft2 ) and 1.25, respectively. The primary factor

leading to the relatively high levels of turn performance is the optimum wing loading value, which is

considerably lower than that of any known advanced fighter. Also, the optimum T/W is modest

compared to some advanced fighters, which is an important factor in keeping vehicle costs down.

Figure 5(b) shows the optimum values of wing A, X, and tic for the nominal configuration to be

400, 0.22, and 0.052, respectively.

For the nominal configuration, a maximum angle of attack of about 150 was reached at

maximum instantaneous turn rate for M = 0.9 (fig. 5(c) concluded), while the angles of sustained

turn rate are 70 and below (again because of the low value of WIS). As indicated in table 1, the

greater consumption for the combat phase of the mission occurs during the three supersonic turn

maneuvers. Note also that the total time at maximum power for combat is on the order of about

5.3 min for the nominal configuration. This may be a longer time than is actually required for this

vehicle to engage two opponents and launch two missiles.

Vehicle Parameter Sensitivities

General- This section presents the sensitivity of the weight and combat effectiveness of the

nominal configuration to changes in wing loading, thrust-to-weight ratio, and ultimate load factor.

The effects of a variation in (WIS) on the vehicle weights and relative size were shown earlier in

figure 4(a) as an example of data presentation. The gross weight decreases rapidly with increasing

WIS up to a value of about 3.35 kN/m 2 (70 lb/ft2 ) due to an improving wing weight fraction and a

decreasing drag level associated with a smaller wing. The sketch shows the relative size of the various

configurations considered. The nominal configuration (filled symbols) is not selected as that having
least gross weight due to a compromise with combat performance (fig. 4(b)). The turn rate

capability of the vehicle is degraded at higher wing loadings, particularly for the M = 0.9 combat

conditions. However, acceleration is improved by increasing the wing loading (lower drag).

The angle of attack for maximum instantaneous turn rate increases rapidly with increasing

wing loading, particularly for M = 0.9. Again, it should be pointed out that the nominal launch
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wing loading of 2.11 kN/m2 (441 lb/ft2 ) is a result of a compromise between vehicle weight and
combat performance and is considerably lower than that of existing or planned manned combat
aircraft. This low wing loading results in significant improvements in combat turning performance
for the RPV as compared to a manned aircraft.

The effects of variations in vehicle takeoff thrust-to-weight ratio, T/W, are shown in figure 6. It
is apparent that the vehicle weight and size are very sensitive to this parameter. The configuration
gross weight and size increase significantly with higher TIW due to the cascading effects of increases
in propulsion system weight and size. As noted, the nominal value of TIW (filled symbols) for the
combat RPV in this study is lower than that proposed for advanced manned fighters. As with wing
loading, the vehicle TIW is determined on the basis of a compromise between weight and combat
performance. Figure 6(b) indicates that TIW has a significant effect on the vehicle's combat
performance. An increase in TIW results in higher values of sustained turn rate as well as less
negative levels of PS for maximum instantaneous turn rate. More significant, however, are the
increases in specific power for 1 g flight (6 = 0) and reductions in acceleration time associated with
higher thrust-to-weight ratios. However, these improvements in combat performance are accom-
panied by increases in vehicle gross weight as indicated before. It is concluded that engine weight,
cost, and performance have a strong effect on vehicle performance; advanced technology will
produce significant payoffs in this area.

Higher levels of maximum instantaneous turn rate than those associated with the nominal
configuration can be achieved through an increase in ultimate load factor. The effect of changes in
this parameter on vehicle weight and combat effectiveness is shown in figure 7. The vehicle gross
weight increases with increasing NZult due to higher structural weight fractions, and the vehicle size
grows accordingly, as shown in figure 7(a). For this study, the RPV is allowed to maneuver to its
structural limit. Thus, very high levels of maximum instantaneous turn rate can be reached at the
higher values of ultimate load factor (fig. 7(b)). This results in reductions in specific power for
maximum instantaneous turn rate, but only minor changes in the other combat performance param-
eters. The use of advanced materials can result in sizable payoffs for vehicles with high ultimate load
factors. Reductions in wing weight through the use of composite materials are considered in a later
section.

Geometry- Figure 8 shows the results of variations in wing thickness-to-chord ratio. Fig-
ure 8(a) indicates that increases in tic of the wing beyond the nominal value (filled symbols) will
result in increased gross weight primarily due to increased fuel fractions associated with the higher
supersonic drag of the thicker wing. Values of tic below the nominal appear to have minor but
beneficial effects on vehicle weight. Since the wing on this vehicle contains neither fuel nor equip-
ment, a thinner wing could be used, resulting in a reduction in acceleration time as well as improve-
ments in several other combat performance parameters with only a minor loss in sustained turn rate
at M = 0.9 (fig. 8(b)). The optimization process did not yield a thinner wing because the optimizer
was instructed to search for gains in sustained turn rate at M = 0.9 with minimum penalties in
weight.

The effects of wing leading-edge sweep (A) are shown in figure 9. Vehicle weight is seen to
decrease with increasing A primarily due to a lower unit wing weight associated with a decreasing
wing aspect ratio (fig. 9(b) concluded). (The aspect ratio decreases with increasing sweep when taper
ratio is held constant for a wing with an.unswept trailing edge.) A nominal value of sweep of 400
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resulted from a compromise with combat performance (fig. 9(b)). As A is increased, sustained turn

rate at M = 0.9 decreases due to a loss in lift (fig. 9(b) concluded). However, the lower supersonic

drag levels at the higher A result in an increased acceleration capability (increasing PSig at M = 1.2)

and substantially reduced acceleration times. An increased wing sweep thus offers the possibility of

reducing vehicle weight and improving acceleration performance over that of the nominal configura-

tion, but at the expense of a degradation in subsonic sustained turn rate.

Figure 10 shows the results of a variation in wing taper ratio (X) about the nominal configura-

tion value. For an unswept trailing edge (as in the study RPV) the taper ratio is solely a function of

aspect ratio when the leading-edge sweep is held constant. When the taper ratio is increased, the

aspect ratio is reduced as indicated in figure 10(b) concluded, resulting in planforms (fig. 10(a))

ranging from the nominal trapezoidal shape to a pure delta wing at X = 0. Figure 10(a) shows that

as the taper ratio is reduced, the vehicle weight increases as a result of the increasing unit wing

weights at the higher aspect ratios. There are only minor effects on combat performance as shown

in figure 10(b). The loss in sustained turn rate with increasing X at M = 0.9 is due to a loss in lift

accompanying the lower aspect ratios.

Figure 11 shows the effects of increasing the body fineness ratio above that of the nominal

configuration value of 8.9. There is a slight reduction in vehicle gross weight with increasing body

fineness ratio principally due to a lower supersonic wave drag and therefore reduced fuel require-

ments. Changes in this geometrical parameter have minor effects on combat effectiveness

(fig. 11 (b)).

The influence of the canard volume coefficient (defined as the ratio of canard moment arm to

wing mean aerodynamic chord multiplied times the ratio of canard to wing planform area) on

vehicle weight and combat performance is shown in figure 12. A nominal value of 0.4 was derived

from a survey of the data for several typical aircraft-type configurations. Figure 12 shows that the

larger canard and wing sizes and the associated weight and drag increases result in increased vehicle

gross weight. Advanced control technology may allow a volume coefficient lower than the nominal

value used here, thus leading to reductions in gross weight as indicated in figure 12(a). Combat

performance is only slightly affected by the canard-volume coefficient (fig. 12(b)).

Figures 13, 14, and 15 show the effects of canard thickness-to-chord ratio, leading-edge sweep,

and taper ratio, respectively. Variations in these parameters have essentially no effect on combat

performance. Similarly, there are only minor effects on vehicle gross weight, with a slight reduction

in W accompanying increases in canard sweep and taper ratio (figs. 14(a) and 15(a)).

A zero static margin is assumed for the fully loaded vehicle, since controlled configured vehicle

(CCV) concepts are to be employed. The effects of a variation in static margin from +5 percent to

-10 percent are shown in figure 16. In this study, the selected static margin affects primarily the

wing longitudinal location and the canard size. It appears, at least for the depth of analysis

performed, that the chosen static margin has little effect on vehicle weight and combat perfor-

mance. However, this parameter, together with tail volume coefficient, will probably have a more

significant effect when advanced control technology is fully exploited in a more detailed design.

The final parameter investigated in the geometry section is the vertical surface size expressed in

terms of percentage of wing area. The results of a variation in tail size from 5 to 20 percent of the
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wing area are shown in figure 17, with a value of 10 percent being used for the nominal configura-
tion. Vehicle gross weight increases with vertical size requirements and accompanying increased
surface weight and drag, but combat performance remains essentially the same.

Aerodynamics- Figure 18 shows the effects of numerically imposing a ±10 percent change in
lift coefficient about the nominal value over the entire mission. This increment in lift could be
accomplished, for example, by using a variable incidence wing. An increase in the lifting efficiency
of the vehicle (fig. 18(a))produces a significant reduction in gross weight, as well as substantial
improvements in the sustained turn rate and specific power for maximum instantaneous turn rate
(fig. 18(b)). There is a small but beneficial effect on vehicle acceleration capability due to increases
in vehicle lift.

Figure 19 presents the effects of an assumed ±10 percent change in zero-lift drag coefficient
about the nominal configuration. The vehicle gross weight appears to be very sensitive to changes in
this parameter (fig. 19(a)), which has a strong effect on fuel usage during the mission. This param-
eter in turn affects the vehicle'size as shown. Increased CDo significantly reduces the sustained turn
rate at supersonic speeds as shown in figure 19(b). (The slight rise in some of the performance
curves at M = 0.9 is a result of the order of performing the mission legs in the synthesis program.)
From figure 19(b) concluded, it is apparent that there is a very large effect on the vehicle accelera-
tion capability due to changes in zero-lift drag coefficient.

The effects of numerically imposing a ± 10 percent change in drag due-to-lift coefficient about
the nominal configuration throughout the mission is shown in figure 20. This parameter does not
have as significant an effect on the vehicle gross weight as the previous two aerodynamic param-
eters. However, an increase in drag-due-to-lift does result in an increased gross weight (fig. 20(a))
and a significant reduction in PS for maximum instantaneous turn rate (fig. 20(b)).

Figure 21 presents the effects of a ±30 percent change about the nominal value of the drag of
the weapons, consisting of two missiles and their attachments. As previously indicated, this spread
in the drag level is representative of that noted from wind-tunnel data on similar weapons and
mounting methods. The results show an increase in the vehicle's gross weight with increasing
weapons drag (fig. 21(a)), but only minor effects on combat effectiveness (fig. 21(b)).

Aerodynamic characteristics clearly have a very significant effect on the RPV weight and
combat performance. Although the aerodynamic characteristics used here are hopefully conserva-
tive in nature, these large effects dictate the need for substantiating wind-tunnel data on this type of
configuration before additional studies are undertaken.

Weights- Figure 22 shows the effects of a variation in the weight of fixed equipment (such as
avionics, electro-optical sensor, and electrical systems) from 45 to 340 kg (100 to 750 lb). The
nominal value of 227 kg (500 lb) was selected on the basis of a survey of the weights of various
components anticipated for the RPV combat mission. This value is believed conservative in view of
projections for miniaturization of this kind of equipment in the future. Vehicle gross weight and
size increase with increased fixed equipment weight, but the vehicle combat performance is only
slightly affected (fig. 22).

For the above variation in fixed equipment weight, the density of packaging the components
into the fuselage was assumed constant at 481 kg/m 3 (30 lb/ft3 ). The effects of varying the density
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of the fixed equipment for a constant weight of 227 kg (500 lb) is shown in figure 23. Increasing

the fixed equipment density results in a vehicle that is shorter but actually has a slightly higher gross

weight. This apparent inconsistency is explained by the greater supersonic wave drag and increased

fuel fraction that accompanies the lower fineness ratio body resulting from the higher values of

equipment density. The higher drag level of the body also results in a slight reduction in supersonic

combat effectiveness as shown in figure 23(b). Increasing fineness ratio while increasing equipment

density would give the expected result of lower gross weight. The fixed equipment requirements for

this mission should be defined in more detail, including assessment of the impact of technology

advancements in weight and cost.

Figure 24 shows the effects of a change in wing weight from the value associated with the

all-aluminum structure of the nominal configuration. Allowances of 20 percent above and 40 per-

cent below the nominal wing weight were made to cover nearly every possible material or method

of construction. The relatively high reduction of 40 percent is based on indications that a wing

weight saving of as much as 35 percent may be realized through the use of composite materials and

improved structural arrangements. As figure 24(a) shows, decreased wing weight significantly

reduces gross weight but has only minor effects on combat performance (fig. 24(b)). Of course,

there are other areas in the vehicle where the use of advanced materials would result in further

weight reductions. However, it is of prime importance to keep the RPV cost down, and therefore a

trade between structural material weight and cost must be considered. This would seem to be an

area to address in more detail in any follow-on studies of combat RPVs.

Figure 25 presents the effects of variations in payload weight from 36 to 227 kg (80 to

500 lb). The payload consists of two missiles, one mounted under each wing; the above weight

range therefore covers weapons weighing from 18 to 113 kg (40 to 250 lb) each. As previously

indicated, the nominal configuration carries two infrared seeking missiles of 72.5 kg (160 lb) each,

for a total of 145 kg (320 lb). As the weight of the weapons is varied, their size and, therefore, their

drag are appropriately accounted for in this study. An empirical procedure based on available data is

used to estimate the drag level of each missile size. Of course, each weapon system size and

mounting scheme should be investigated in the wind tunnel to establish the exact aerodynamic

penalty. The vehicle gross weight obviously increases with heavier weapons, but combat perfor-

mance is only slightly affected (fig. 25).

Mission Parameter Sensitivities

Cruise altitude and Mach number- Figure 26 shows the effects of lowering the cruise Mach

number (both out and back) below the nominal value of 0.9. As carrbe seen, there is no particular

advantage of cruising at a lower speed; in fact, there is an increase in gross weight for Mach numbers

below about 0.8. There is no effect on combat effectiveness due to changing cruise Mach number as

indicated in figure 26(b). As shown in figure 27(a), variations in cruise altitude (both out and back)

have a greater effect on vehicle gross weight, which continuously decreases as the cruise altitude is

increased up to a value of 15,240 m (50,000 ft). Improved cruise performance is obtained at higher

altitudes due to the very low wing loading. A 13,716 m (45,000 ft) cruise altitude is used for the

nominal mission. Again, there is essentially no effect of cruise altitude on combat performance

(fig. 27(b)).
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Combat altitude and Mach number- The nominal combat altitude is 9,144 m (30,000 ft);effects on vehicle weight and combat performance of changes in this altitude are shown in figure 28.Figure 28(a) indicates that the minimum gross weights occur at altitudes between about 9,144 to
12,192 m (30,000 to 40,000 ft); outside this range, the vehicle weight increases rapidly. Combataltitude also has a very significant effect on RPV combat performance (fig. 28(b)). Reduced engine
performance with increasing altitude results in a steady decrease in both specific power for 1 g flight(0 = 0) and sustained turn rate (and the corresponding sustained load factor) with increasing com-bat altitude for both the combat Mach numbers of 0.9 and 1.2. As a result of reduced engine thrustwith increasing altitude (fig. 28(b) concluded), acceleration time greatly increases for combat alti-tudes above 10,668 to 12,192 m (35,000 to 40,000 ft).

For the Mach 1.2 combat condition, there is a small but continuous increase in maximum
instantaneous turn rate with increasing altitude for a constant limiting load factor of 11. This isaccompanied by a loss in PS for maximum instantaneous turn rate and an increase in angle of attackrequired to maintain a load factor of 11 up to a value of 230 at 15,240 m (50,000 ft).

An increase in combat altitude for the Mach 0.9 combat phase of the mission produces asomewhat different result (fig. 28(b) concluded). For this Mach number, the RPV can maintain alimiting load factor of 11 with increasing combat altitude up to about 12,802 m (42,000 ft). At thispoint, the vehicle reaches its maximum lift condition at an angle of attack of about 34'. Above this
altitude, the vehicle can no longer generate sufficient lift to reach its maximum load factor, and
therefore the maximum instantaneous turn rate (and load factor) drops off. It should be pointed
out again that the aerodynamic characteristics (as well as the air-induction system characteristics)
need investigation at high angles of attack in the wind tunnel, since the prediction methods forthese nonlinear conditions are not well developed.

Figure 29 shows the effects of increasing the supersonic combat Mach number above thenominal mission value of 1.2. It is apparent that a higher supersonic Mach number combat capabil-ity will necessitate significant increases in vehicle weight (fig. 29(a)). The combat performance for
both the M = 0.9 and the supersonic legs of the mission is shown in figure 29(b), where the majorchanges are seen to occur for the supersonic combat Mach numbers. Figure 29(b) concluded thus
presents only the variations in combat effectiveness for vehicles designed for different supersoniccombat Mach numbers. As shown, there is an initial loss in sustained turn rate and an increase inacceleration time with increasing Mach number above 1.2, but at about M = 1.4 these curves tendto level off. The maximum instantaneous turn rate continuously decreases with increasing super-sonic combat Mach number.

Figure 30 shows the effects of decreasing the subsonic combat Mach number below thenominal mission value of 0.9. The gross weight of the RPV is somewhat reduced for the lower Mach
numbers (fig. 30(a)), and there are some significant changes in the combat effectiveness of thevehicle. Since figure 30(b) indicates that the major performance changes occur at the subsonic Machnumber, figure 30(b) concluded presents only the subsonic combat performance results. As can beseen, there is a continuous decrease in specific power for 1 g flight (0 = 0) with a decrease in Mach
number, but there is little effect on acceleration time. There is an initial rapid increase in sustainedturn rate with decreasing Mach numbers below 0.9, but the curve levels off and begins to reversedirection at about Mach number 0.75.
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The most interesting results associated with changes in subsonic combat Mach number occur

for the maximum instantaneous turn rate condition. As speed is reduced, the angle of attack

continuously increases to maintain a load factor of 11 until a Mach number of about 0.62 is

reached. At speeds below this point, the configuration can no longer generate sufficient lift to reach

its maximum load factor, and therefore the maximum instantaneous turn rate (and load factor)

drops off. This finding once again demonstrates the importance of wind tunnel data on the

aerodynamic, inlet, and propulsion system characteristics at high angles of attack so that a wide

Mach number and altitude combat capability for the RPV can be achieved.

Combat'range and maneuvers- Figure 31 shows the effects of variations in the combat radius

from 185 to 741 km (100 to 400 n.mi.). As the range increases, the vehicle gross weight increases

and the vehicle size goes up, since the total fuel supply is carried internally in the fuselage. The

nominal vehicle weighs 2,460 kg (5,425 lb) for the 370 km (200 n.mi.) mission; to double this

combat radius to 740 km (400 n.mi.); the RPV would weigh a little more than twice as much, or

some 5,198 kg (11,460 lb). The use of external fuel tanks or air launch becomes more attractive for

the longer range missions. The small changes in combat performance (fig. 31 (b)) are associated with

the relative weights of the vehicles on reaching the combat area; that is, for the same takeoff

thrust-to-weight ratio, the vehicle flying the longer range mission uses up more fuel and therefore

has a relatively higher T/W (and slightly higher performance) on reaching the combat zone.

Additional effect on gross weight of variations in the number of supersonic and subsonic

combat turning maneuvers is shown in figure 32. The nominal curve (repeated from fig. 31) is for

three supersonic (M = 1.2) and four subsonic (M = 0.9) turns of 3600 at PS = 0. For the nominal

configuration (tic mark), this results in a total combat time at maximum power of about 5.3 min

(including acceleration time from M = 0.9 to 1.6). As the number of turns is reduced, the vehicle

becomes lighter for any given range (fig. 32). For example, taking curve D (one supersonic and one

subsonic turn) for the 370 km (200 n.mi.) range case, the vehicle weight is down to about 1,678 kg

(3,700 lb) and the total combat time is on the order of 2.5 min. Thus the range and turning

maneuver requirements can have a significant effect on the gross weight of the RPV. Additional

studies are needed to obtain a better assessment of the maneuvering time that may be required of an

air-to-air combat RPV. This time will depend to a large extent on the weapons system of the

RPV and the capabilities of its opponent.

Sensitivity Factors

The preceding sections have presented the effects of variations in both vehicle and mission

parameters on the RPV weight and combat performance. The range of the individual parameters

was large enough to exhibit the overall, nonlinear sensitivity characteristics. Another method of

presenting the results is in terms of sensitivity factors, as defined earlier, which are based on local

slopes about the nominal configuration. The sensitivity factors derived from the results discussed

above are presented in table 2 for both vehicle and mission parameters. The arrows indicate the

desired direction of the sensitivity factors: that is, a decline in gross weight and acceleration times

and an increase in the three combat performance factors. If a sensitivity has a sign indicating

movement in the desired direction (+ for an increase and - for a decrease), then an increase in the

parameter is beneficial and conversely. The gross weight sensitivity factors are given for variations in

most all vehicle and mission parameters, and for any significant changes in combat performance.

The sensitivity factors for combat performance are given for M = 0.9 and 1.2.
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The data in table 2 indicate that the following parameters have a significant effect (i.e., asensitivity factor greater than one) on either weight on combat performance:

Vehicle or mission parameter

gross weight,(Wg) W/S, T/W (t/c)wing, (A)wing, CL, CDo, combat M

acceleration time, (Acc) WIS, TIW, NZult , (t/C)wing, (A)wing' CDo
sustained turn rate,(0s) TIW, CL, CDo, combat altitude, combat M

specific power at 1 g flight T/W, (t/)wing, (A)wing, CD combat altitude,
condition (0 = 0 )(PSlg) subsonic combat M o

specific power for maximum W/S, NZult , CL, CDL , combat altitude, supersonic
instantaneous turn rate, combat M

(PSI.)

Based on the number of times a parameter appears above, the nominal configuration is the mostsensitive to changes in vehicle thrust-to-weight ratio, zero-lift drag coefficient, and combat Machnumber. Next come wing loading, wing thickness and sweep, lift coefficient, and combat altitude.Note that the sensitivity factors indicate only the local effects about the nominal configurationpoint, and that the parametric trade curves presented in the previous sections should be consulted
for detailed effects.

CONCLUDING REMARKS

A computerized synthesis program has been used to assess the effects of various vehicle andmission parameters on the performance of a highly maneuverable remotely piloted vehicle (RPV)for the air-to-air combat role. Performance has been evaluated in terms of both the required vehicle
weight to accomplish a specified mission and the combat effectiveness as measured by turning andacceleration capability.

Using an optimization process with minimum values specified for certain combat parameters, anominal configuration has been established having a gross weight of 2460 kg (5425 lb), the mini-mum required to accomplish the study mission. This configuration has a relatively high level ofcombat maneuvering performance compared to advanced manned fighters, primarily due to itslower optimum wing loading of 2.1 kN/m 2 (44 psf) at launch. The optimum thrust-to-weight ratioof 1.11 (at launch), which is relatively modest compared to advanced manned fighters, tends toreduce the weight and therefore cost of the propulsion system, but it also causes some reduction in
acceleration performance. Effects of this reduced acceleration capability on the overall RPV combatperformance should be assessed from combat simulation studies. The strong influence of the propul-
sion system on the weight of this vehicle indicates that technology advancements leading to lighterand less costly engines can result in significant payoffs.
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Principal results of sensitivity studies using the nominal vehicle as a base point are as follows:

1. The configuration characteristics that exhibit the greatest effects on vehicle weight and combat

performance are thrust-to-weight ratio, wing loading, wing-thickness ratio, and wing sweep.

The mission parameters having the most significant effects are combat Mach number and

combat altitude. The combat range and number of turning maneuvers selected for the basic

mission can also have a large effect on the RPV design weight. Additional studies are needed to

obtain a better assessment of the amount of maneuvering time required of an air-to-air combat

RPV. These studies should account for the characteristics of the weapons system and the

capabilities of the opponent.

2. Of the aerodynamic characteristics considered in the sensitivity studies, zero-lift-drag

coefficient and lift coefficient have the greatest effects; effects of variations in the former are

particularly pronounced. Increasing combat altitude or decreasing combat Mach number

results in excursions to maximum lift capability of the RPV. It is apparent that the methods of

high angle-of-attack aerodynamic analysis need further experimental verification, particularly

wind tunnel tests of the aerodynamic and inlet characteristics over a wide range of angles of

attack and Mach number for this type of configuration.

3. Technology advancements leading to reduced structural weights and lower fixed equipment

weights are shown to reduce the RPV gross weight, but trade-offs against cost should be

considered in these areas.

4. The results indicate that increased combat performance can be designed into the RPV by any

of several methods, such as increasing thrust-to-weight ratio, lowering wing loading, increasing

limiting load factor, as well as changes in several other vehicle parameters, or through a

combination of these. However, these improvements in performance generally come at the

expense of significant increases in vehicle gross weight and therefore cost. Thus, studies should

be pursued to assess the level of combat performance that will be required in a highly maneu-

verable RPV.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif. 94035, October 5, 1973
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TABLE 1.- MISSION PERFORMANCE SUMMARY OF THE NOMINAL CONFIGURATION

Fuel and time

Fuel used
Mission leg Power setting kg lb Time, min

Climb Intermediate 131.5 (289.9) 4.51
Cruise out Cruise 142.2 (313.4) 20.38
Acceleration (M=0.9 to 1.6) Maximum afterburning 112.6 (248.3) 1.221 Total

Supersonic turns (M=1.2) Maximum afterburning 175.9 (387.8) 2.16 , Combat time = 5.29 min
Subsonic turns (M=0.9) Maximum afterburning 120.3 (265.3) 1.91
Cruise back Cruise 151.0 (333.0) 23.25
Descent and reserves 22.7 (50.0)

856.2 (1887.7)

Combat performance

Supersonic turns (M= 1.2)

PS =.110 m/sec (362 ft/sec) PsI= -315 m/sec (-1034 ft/sec)
ig i

s = 8.320 per sec i = 16.930 per sec
NZ = 5.5 NZi= 11.0

Sustained turn radius = 2506 m (8221 ft) Maximum instantaneous turn radius = 1231 m (4040 ft)

Subsonic turns (M=0.9)

PSig = 169 m/sec (556 ft/sec) PSI= -500 m/sec (-1640 ft/sec)

0s = 12.550 per sec 0i = 22.570 per sec

NZ = 6.2 NZi= 11.0

Sustained turn radius = 1246 m (4087 ft) Maximum instantaneous turn radius = 693 m (2273 ft)



TABLE 2.- SENSITIVITY FACTORS

Vehicle parameters

Weight,(Wg) Acceleration time PSlg

Parameter varied (P) AWg/Wg AAcc./Acc. Combat, PSl gPSlg A s PsPs
\P/P APIP M APP APP AP/P

0.9 -0.119 -0.738 -1.502W/S -1.224 -1.821
1.2 .972 .159 -. 850

.9 1.358 .301 .311
1.2 2.330 1.147 .623

.9 0 0 -2.566NZult .792 1.029 1.2 0 0 -2.899

.9 .234 .249 -. 428
(t/c)wing 1.000 2.167 1.2 -1.149 -. 719 .314

.9 -. 342 -. 669 -. 768
(A)wing -1.282 -1.803 1.2 1.657 .553 -. 580

(X)wing .9 -. 132 -. 138 -. 157
1.2 .172 -. 044 -. 142

CL -1.037 -. 410 .9 -. 225 .797 2.561
1.2 .552 1.082 2.901

CD 2.442 3.620 .9 .360 .319 .457
C 1.2 -2.417 -1.142 -. 604

CDL .461 205 .9 0 -. 119 -1.220
L 1.2 0 -. 601 -1.378

Ild body -. 335 --- ---

Canard volume coefficient .295 --- -

(t/c) canard 0 --- ---

(A) canard -. 295 --- -

(X) canard -. 076 --- --

Vertical tail size .074 --- ---

CDo weapons .330

Fixed equipment weight .513 --- --

Fixed equipment density .142 ---

Wing weight .691 --- ---

Payload weight .429 ---

Mission parameters

Combat altitude 0.9 -1.349 -1.235 -2.180
1.2 -. 939 -. 871 -1.750

Combat Mach number

* Supersonic 2.212 .738 --- 0 -1.875 -2.901
* Subsonic 1.327 .266 --- 1.619 -3.586 .091

Cruise Mach number .270 --- --- ---

Cruise altitude -. 622 --- ---

Combat radius .691 --- ---
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Combat - (altitude = 9144 m (30000 ft); maximum power)
* Acceleration from M = 0.9 to 1.6

* Three, PS = 0 turns at M = 1.2

m ft * Four, PS = 0 turns at M = 0.9

20000 - Payload - 2 IR missiles 145 kg (320 lbs)

60000

Cruise out - Cruise back -
15000 M = 0.9, h = 13716 m (45000 ft) M = 0.9, h = 13716 m (45000 ft)

o40000 -
No range credit nor

0000 -Climb - fuel penalty

Intermediate power Descent -
setting Combat no range credit

h = 9144 m (30000 ft)
20000

5000

Ground

launched recovery
0 - I -recovery

I370 km (200 n. mi.) i 370 km (200 n. mi.)

Range

Figure 1.- Nominal mission.



W/S = 2.1 kN/m 2 (44.0 lb/ft 2 ) T/W = 1.11 NZult = 11.0

Geometry summary

Wing Canard

S = 11.47m 2 (123.50 ft 2 ) S = 2.77 m2 (29.80 ft2 )
b = 5.91 m (19.40 ft) b = 2.90 m (9.53 ft)

AR = 3.05 AR = 3.05
A = 40.0 A = 40.0

t/c = 0.052 t/c = 0.050 ---

Body

I = 8.00 m (26.26 ft)
d = 0.90 m (2.95 ft)

Weight statement

Weight %Wg

Structure 646 (1425) 26.2
Propulsion 524 (1156) 21.3
Fixed equipment 227 (500) 9.2
Residual load 62 (136) 2.5
Fuel 856 (1888) 34.8
Payload 145 (320) 5.9

Wg = 2460 (5425) ' I

Figure 2.- Nominal configuration; all dimensions are in meters (feet), areas in square meters (square feet), and weights in kilograms
(pounds).



Optimizer Control

Geometry Aerodynamics Propulsion Trajectory Structures Weights

Figure 3.- Synthesis program block diagram.



w/S

0 WGTO kN/m2  b/ft 2

El FUEL * 1.82 (38.0)
A STRUCTURE x 2.11 (44.0)

kg lbs 0 PROPULSION + 3.83 (80.0)

8.00

3.50- 7.50

7.00

3.00- 6.50

6.00

W 2.50- 5.50
E
G 5.00
H '
T 2.00- 4.50 ....

4.00

0 3.50

0 1.50-
3.00 t

2.50 -
1.00- 2.00

m"B"----'B .... (3 ... 82.00 -

1.50 -

.50 1.00 - 1.00 ~ --=~~~1.---1

0.50 -

0 - 0.00
30. 00 '45 00' '60!00' '75!00' '90 00 lb/ft2

I I I I

1.5 2.5 3.5 4.5 kN/m 2

w/S

(a) Weights.

Figure 4.- Effect of wing loading.
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w/S

kN/m 2  lb/ft 2

o 1.82 (38.0)
I 2.11 (44.0)

A 3.83 (80.0)

m/sec ft/sec MACH NO. = 0.9 m/sec ft/sec MACH NO. = 1.2

1.00-
3.00 - 2.00 -

2.50

S 2.00 - S 1.50 -
p p
E .50- 1.50 E
C C
I 1.00 I 1.00 -
F F
I 0.50 I .25
C C

0 0.00 0.50

O -0.50 ,- * 0
w . w
E -1.00 * E 000
R •R O

-. 50 -1.50 - -

-2.00 - -0.50

0 -2.50 -, -.25-

1 -3.00 0-1.00

-3.50 -

-4.00 -.0 -1.50
-. 50-

-4.50 -

-1.50 - -5.00 2.00-.50 -00 1000'20!00'30. 00o4000 -2. ood ' Jod '12!od 'elod
TURN RATE TURN RATE

(b) Combat performance.

Figure 4.- Continued.
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m/sec ft/sec

2000
500

0- 0

PS

-1000 -

-2oo000o -

200_i nstantaneous turn rate

14
0.9

12 - - M = 1.2

Sustained
s 10 0turn rate

8 - ,- -L ----

6

40

20 Maximum320 5
instantaneo u s t u r n r a t e

O Sustained turn rate

12O -

Time, sec 80 
Acceleration time -

M = 0.9 to 1.6
40

I I I I I I
30 40 50 60 70 80 lb/ft

I I I I I I
1.5 2.0 2.5 3.0 3.5 4.0 kN/m2

w/s

(b) Combat performance (concluded).

Figure 4.- Concluded.
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kg lbs

8000 - 0 Configurations used in
3500 - figure 4(c)

7000

3000

oooo6000 -

2500 -

5000

2000

4oWoo - Wg
W 4000

©
1500

3000 -

1000
2000 -

Fuel

500 - 1000 - Structure

Propulsion

0- o0 I I I
8 9 10 11 12 13 14 15

Sustained turn rate at M = 0.9

t I I i
4 5 6 7

Sustained load factor at M = 0.9

(a) Weights.

Figure 5.- Optimized configurations for various levels of combat performance; NZult = 11.
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.06

(t/c)wing .05 -

.04 -

(A)wing .22 -

.20 -

50-

(A)wing 40 -

30 -

1.3 -

1.2 -

1.1
T/W

1.0 -

.9 -

kN/m 2  8 -8

3.00 - lb/ft 2

60 -

2.50
W/S 2 50

2.00 4

8 9 10 11 12 13 14 15
Sustained turn rate at M = 0.9

(b) Geometry.

Figure 5.- Continued.
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O Configuration identified
in figure 4(a)

m/sec ft/sec M = 0.9 M = 1.2
1000

250

Ns,

0 0

a -250 3
-1000 --

-500 -

-2000 --

-750 -

-3000I I I I I
0 10 20 30 0 10 20

Turn rate

(c) Combat performance.

Figure 5.- Continued.
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m/sec ft/sec

1000 -
250 - PSlg

--------------------------------- 4

0 0

-250
PS -1000 - - -

-500 - Maximum instantaneous

-2000 - turn rate-2000

-750 -
M = 0.9

-3000 - M = 1.2

25 -

20 -

15 - Maximum instantaneous turn rate

10

5---- --------------
Sustained turn rate

0

10 -
Sustained turn rate at M = 1.2

6s 8 -- -- -

6

80

Time, sec --

6 0  Acceleration time - M = 0.9 to 1.6

I I I I I I I I
8 9 10 11 12 13 14 15

Sustained turn rate at M = 0.9

(c) Combat performance (concluded).

Figure 5.- Concluded.
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T/W
o WGTO

o: FUEL * 0.9000

A STRUCTURE X 1.1100

kg lbs 0 PROPULSION + 1.4000

4.50 - 10.00 -

9.00
4.00 - 0

8.00 -
3.50 -/

7.00 -
w -
E 3.00-
I
G 6.00 - ,
H
T 2.50 -

5.00 -
1 ~ -
0 2.00-
0 4.000

1. 50 -:
3.00 -

1.0- 2.00 - -

43-- A'

.50 - 1.00 -

0 - 0.o00 oeb ' o!9' 106 '1 2 '1!46 '154I
T/W

(a) Weights.

Figure 6.- Effect of thrust-to-weight ratio.
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T/W

0 0.9000
s 1.1100
A 1.4000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 - 2.00 -

.50 -
1.50 - S 1.50 -

P
S E
P C
E 1.00 1I 1.00 -
C .25 -F
I I
F C
S0.50 0.50

C P

0 E 0.000 0

-0.50 1 -0.50 

0
1 -. 25 -0
0 -1.00 -1.00

-1.50 -1.50 -
-. 50

-2.00 -2.00S0.00'10o00'20 oo00'30!00'400 o!oo od sa o 2od e.lo
TURN RATE TURN RATE

(b) Combat performance.

Figure 6.- Continued.
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m/sec ft/sec

1000 P
25o - Psig - ----. . .--

0 0

PS

-250 - -1000

Maximum instantaneous turn rate

-500 -
-2000

14

12-

10 Sustained turn rate

8 -I--

6

15 *Maximum instantaneous turn rate

o L

S- Sustained turn rate

140 - M = 0.9

120 - M = 1.2

100 -
Time, sec

80 - Acceleration time-
M = 0.9 to 1.6

60

40o

I I I I I I I

.8 .9 1.0 1.1 1.2 1.3 1.4

T/w

(b) Combat performance (concluded).

Figure 6.- Concluded.
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0 WGTO NZult
El FUEL * 7.0000
A STRUCTURE X 11.0000

lbs 0 PROPULSION + 15.0000
8.00

3.50- I
7.50 10

7.00 /

3.00- 6.50 -

6.00 -

2.50- 5.50 -

E 5.00 -

G 4.50 -
H 2.00- 
T O"4.00 -

3.50
0 1.50 -
0 3.00 -
0 I

2.50 -
1.00- . - -

2.00 - - '

1.50 ... - A" --

•50- 1.00 - ..-

0.50 -

0 - 0.00
6.00 00 10.00' 12.00' 1400 16.00

NZult

(a) Weights.

Figure 7.- Effect of ultimate load factor.
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NZult

o 7.0000
1 11.0000

A- 15.0000

m/sec ft/sec MACH NO. = 0.9 MACH NO. = 1.2

1.00 - 1.00 -

S 0.50 0.50 -
P P 05
E E
C 0 0.00 I 0.00

F F
I -0.50 - -0.50 -
C C

S-1.00 - P -1.00 -
0 0

E E-1.50

0 -. 75 -2.50 - 0 -2.50 -

-1.00-

0 0

-3.00 -3.0 -

-3..0-3.50 - -3.50 -

-1.25 4.00 001000200013000'400 - 400 0.00 10!00'20!00'30!00'40!00
TURN RATE TURN RATE

(b) Combat performance.

Figure 7.- Continued.
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m/sec ft/sec

2000 -
500

Ps isg
0 0 --------

PS

-500 -
-2000 - Maximum instantaneous

turn rate

-1000 -

-4oo000 -

30 -

Maximum instantaneous
turn rate

10 - Sustained turn rate

0 M = 0.9
M = 1.2

30

20

Mximum instantaneous turn rate
10 --

O - Sustained turn rate

80
Time, sec

60 Acceleration time - M = 0.9 to 1.6

SI I I I I
6 8 10 12 14 16

NZul
t

(b) Combat performance (concluded).

Figure 7.- Concluded.
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WING T/C
0 WGTO
0 FUEL * 0.0400
A STRUCTURE X 0.0520

kg lbs 0 PROPULSION + 0.0600

8.00 -
3.50 I

7.50 -

7.00 -

3.00 - 6.50 - I

6.00 -

2.50 5.50-

E 5.00 -

G 4.50
H 2.00

4.00 -

1.50 3.50 -
0 1.50
0 3.00 -
0

2.50 - *
1.00 - ,

2.00 -

1.50 - ..0.50 1.00 - -............ ..

.50 - 1.00 -

0.50 -

0 0. 00
o -0.00 03 ' 0!04 ' 0!05 ' 0.06' 0!07

WING T/C

(a) Weights.

Figure 8.- Effect of wing thickness-to-chord ratio.
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WING T/C

0 0.0400
1 0.0520
A 0.0600

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

2.00 - 2.00 -
m/sec

.50
1.50 - S 1.50

P
S Ep C
E 1.00 - 1.00
C .25 F
F C
I 0.50 P 0.50
C 0
p 0 0.00

0 0.00 R

E

-0.50 1 -0.50

1 -. 25- 0
0o -1.00 - -1.00 1

-1.50 - -1.50

-2.00 -2.00
0 00'10!00'20!00'30!00'40002 o od ' sod 12!od -'oel

TURN RATE TURN RATE

(b) Combat performance.

Figure 8.- Continued.
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m/sec ft/sec

1000 -
250 1000 P1g

0- 0

PS

-250 -
-1000 - -- --- - -

Maximum instantaneous turn rate

-500oo -

-2000 -

14-

12 -

s 10 Sustained turn rate

6

20

15

Maximum instantaneous turn rate
a 10 - - _- - I

Sustained turn rate
0-

120 -
M = 0.9

100 - M = 1.2

Time, sec 80 -

60 - --

Acceleration time - M = 0.9 to 1.6

40 -

.o4 .05 .06

Wing t/c

(b) Combat performance (concluded).

Figure 8.- Concluded.
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o WGTO WING SWEEP

o: FUEL * 35.0000
A STRUCTURE X 40. 0000

lbs 0 PROPULSION + 50.0000
kg

8.00 -
3.50 -

7.50 -

7.00 -

3.00- 6.50 -

6.00 -

2.50- 5.50 -

E 5.00 - .
I
G 4.50 -H 2.00-

4.00 -

1 3.50 -
0 1.50-
0 3.00 -

2.50 -
2.00 -

1.50 -
T

.50 1.00 ....-- :.

0.50 -

0 - 0. 00
30 od '36soo0 '42J00' '48od 's54do I

WING SWEEP

(a) Weights.

Figure 9.- Effect of wing leading-edge sweep.
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WING SWEEP

O 35.0000
N 40.0000
A 50.0000

ft/see MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 -
2.00 -

.50-
1.50 - S 1.50 -

P
s E
P C
E 1.00 - 1.00

C .25 I
I C
I 0.50 p 0.50
C 0
P E 0.00
O 0 0.00 R- 0.00

RE
-0.50 - .06, -0.50

1 -. 25-
-1.00 - ' -1.00

st
-1.50 - -1.50

-.50- I

-2.00 -2.00
0-2.00oo' o00o'20oo'00 ooo30o00' oo-00 ood 'slod 12!od elod

TURN RATE TURN RATE

(b) Combat performance.

Figure 9.- Continued.
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m/sec ft/sec

1000
250 PSlg

I

0 0

PS

-250
-1000 -

Maximum instantaneous turn rate

-500 -2000 -
-2000

14

12

s 10 - Sustained turn rate

8C ,----

6 M =0.9
M = 1.2

20

15

Maximum instantaneous turn rate
a0 _ _

5 -ustained turn rate
0

100 -

Time, 80 - Acceleration time - M = 0.9 to 1.6Time, sec

60 -

40 -
Aspect ratio -- (3.65) (3.05) (2.56) (2.15)

I I I I I
30 35 40 45 50

Wing sweep

(b) Combat performance (concluded).

Figure 9.- Concluded.
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WING T.R.
o WGTO
3 FUEL * 0.0000

A STRUCTURE X 0.2200

lbs 0 PROPULSION + 0.3000

kg 8.00
3.50-

7.50

7.00

3.00- 6.50 's

6.00

2.50 - 5.50 - e

E 5.00 -

G 4.50
H 2.00- 4
T

4.00 -

1 3.50 I
0 1.50-
0 3.00 I
0

2.50
1.00- ..

2.00 -a '"-- ----

1.50

.50- 1.00

0.50

.000 ' 0110' 020' 0!30 0140
WING T.R.

(a) Weights.

Figure 10.- Effect of wing taper ratio.
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WING T.R.

o 0.0000
a 0.2200
A 0.3000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/see 2.00 - 2.00 -

50-
1.50 - S 1.50 -

P
S E
P C
E 1.00 - I 1.00 -C FC .25-
F C
I 0.50 0.50C P

P 0
PW
O 0 - 0.00 E 0.00

-0.50 - -0.50

1 -. 25-
0

-1.50 - -1.50
.50-

-2.00 -2.00
0 o00'000'20!00'30 o0'4o00 0 od ' 2.od e'o

TURN RATE TURN RATE

(b) Combat performance.

Figure 10.- Continued.
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m/sec ft/sec

1000
250 Pslg

0- 0

PS

-250 - -1000 --20 -1000----------------------------I----
Maximum instantaneous turn rate

-500
-2000

16

14 -

12 -

6s Sustained turn rate

10 -

8 
-

6 - - M = 0.9

M= 1.2

20 -

15 -

Maximum instantaneous turn rate
a 10 -o -1------------------

5_ _-- -

Sustained turn rate
0-

100

Time, seAcceleration time - M = 0.9 to 1.6
Time, sec 80 [-- ____ ___ --

60 (.5) (257)
Aspect ratio -(4.77) (3.90) 1 (3.05) 2.57

0 .1 .2 .3

Wing taper ratio

(b) Combat performance (concluded).

Figure 10.- Concluded.

45



o WGTO LENGTH/DIAM
E FUEL * 8.8956
A STRUCTURE X 10.0000

lbs 0 PROPULSIONkg + 11.00008.00 -
3.50 -

7.50 -

7.00 -

3.00 - 6.50

6.00 -

2.50 - 5.50 -
w -. ----. -. . .E 5.00 -

H 2.00- 4.50T
. 4.00 -

3.50 -
0 1.50-
0 3.00 -

2.50
1.00 2.00 -

1.50 -

S50 - 1. 00 - -"..... -------......... I

0.50 -

0 - 0. 000- 0.00 800 9 00 ' 10!00 ' 1100' 12.00
LENGTH/OIAM

(a) Weights.

Figure 11.- Effect of body fineness ratio.
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LENGTH/DIAM

* 8.8956

r 10.0000
A 11.0000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 -
2.00 -

.50 -
1.50 - S 1.50 -

E
S C
E 1.00 - 1.00 -
C .25 - I
I C
F-.50 0.50

0 0 E 0. 00

0.50 -0.50

-2.00 -2.0001-2. 00oo 1000'2! 00'30!00'4 -2. o od 's od 2! od 8:o
TURN RATE TURN RATE

(b) Combat performance.

Figure 11.- Concluded.
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o WGTO TAIL VOLUME
El FUEL * 0.3000
A STRUCTURE X 0.4000

lbs 0 PROPULSION
8.00 -

3.50 I
7.50 -

7.00 -

3.00- 6.50 -0

6.00 - /

2.50- 5.50 -

E 5.00 -

G 4.50 -H 2.00-

4.00 -

1 3.50
0 1*50-
0 3.00 -
0

2.50 -
2.00 -...

-r
1.50 - ....

50- 1.00 e-

0.50 -

0 0. 00
020' 03 040' 0150' 060' 0170

TAIL VOLUME

(a) Weights.

Figure 12.- Effect of canard-volume coefficient.
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TAIL VOLUME

0 0.3000
g 0.4000
A 0.6000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 -
2.00 -

•50 1.50 - S 1.50
P
E

S C
P 1.00 - 1.00
E F
C .25 1
I C
F 0.50 P 0.50

P E 0.00
O 0 0.00 R

ET
R -0.50 1 -0.50

0
0

1 -.25 0-
0 -1.00 -1.00 -

-1.50 - -1.50 -

-.50

-2.00 -2.00
0100' 10! 00'20 00' 30 00'4000 o.od 's6od 6 2!od e od

TURN RATE TURN RATE

(b) Combat performance.

Figure 12.- Concluded.
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O W6TO HORIZ. T/C
E FUEL * 0400
A STRUCTURE X 0.0500

lbs 0 PROPULSIONkg + 0.0S00
8. 00

3.50 -
7.50

7.00

3.00- 6.50 -

6.00 -

2.50 - 5.50 -
0.-----------------o

E 5.00
I

H 2.00- 4.50 -

4.00 -

1.50- 3.50

0 3.00 -

2.50 -

50- .50 - --..............

0.50

0 - 0. 00
0 .03 0:04 ' 005 ' 006 ' 0.07

HORIZ. T/C

(a) Weights.

Figure 13.- Effect of canard thickness-to-chord ratio.
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HORIZ. T/C

o 0.0400
g 0.0500
A 0.0600

ft/see MACH NO. = 0.9 MACH NO. = 1.2

/sec 2.00 - 2.00 -

•50- 1.50 - S 1.50 -
P
E

S C
E 1.00 1.00
C .25 I
I C

10.50 p 0.50
C 0
P E 0.00
O 0 0.00 E

-0.50 - -0.50 -

-.25- -1.00 - -1.00 -

-1.50 -15

-.50-

-2.00 000' 10!]00'20! 00'30!~0'40-.00 o. od 's od 'i2!od 5eod
TURN RATE TURN RATE

(b) Combat performance.

Figure 13.- Concluded.
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o WGTO HORIZ. SWP

0 FUEL * 35.0000
A STRUCTURE X 40.0000

lbs 0 PROPULSION + 50.0000
kg

8.00 -
3.50 -

7.50 -

7.00 -

3.00 - 6.50 -

6.00 -

2.50 - 5.50 - -.

E 5.00 -
I
G 4.50 -H 2.00 -

4.00 -

1 3.50 -
0 1.50 -
0 3.00 -

2.50 -
1.*00

2.00 - I
1.50 - --....-

.50 - 1.o - *. ...... ......---- *

0.50 -

0 O. O
30 od '360 oo' '42 o00' '48 oJd ' l do I

HORIZ. SWP

(a) Weights.

Figure 14.- Effect of canard leading-edge sweep.
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HORIZ. SWP

o 35.0000
N 40.0000
A 50.0000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 - 2.00

1.50 - S 1.50
P

1.00E
1.00 - 1.00 -E F

C .25- I
I C

F 0.50 P 0.50
C 0

O 0 0.00 - .o

E

R -0.50 - 1 -0.50 -

0 -1.00 - -1.00

-1.50 - -1.50 -
-. so 50

-2. 00 -2.00-2.00 000' 10 0'20!00' 30!00'40 00 0. 0 ' 6od '12!od slod
TURN RATE TURN RATE

(b) Combat performance.

Figure 14.- Concluded.
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e WGTO HORIZ. T.R.

Eo FUEL * 0.1000
A STRUCTURE X 0.2200

lbs 0 PROPULSION + 0.3000
kg 8.00

3.50- I
7.50 -

7.00 -

3.00- 6.50 -

6.00 -

2.50 - 5.50 - -------....
w ' ... I
I
G I
H 2.00 4.50

4.00 -

1 3.50 -
0 1.50-
0 3.00 -

2.50 -

2.00I
1.50 - A--..........

50 - 1.00 - .......

0.50 -

0 - 0.00
0 00 ' 0!10 ' 0!20 ' 030 ' 0140

HORIZ. T.R.

(a) Weights.

Figure 15.- Effect of canard taper ratio.
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HORIZ. T.R.

o 0.1000
s 0.2200
A 0.3000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

/sec 2.00 -
2.00 -

.50-
1.50 - S 1.50 -

P
S E
P C
E 1.00 - I 1.00
C .25-
F C
I 0.50 1 0.50 -
C 0

P w
O 0 0.00 E 0.00
W R
E g I
R

-0.50 - . -0.50

1 -.25 8
0 -1.00 - -1.00
0 S
0

-1.50 - ' -1.50 -
-.50-

-2.00 02.00-2o 00' oooloo'200oo0'3o'o'4o' o-2". od '6sod '12!od 'e'od
TURN RATE TURN RATE

(b) Combat performance.

Figure 15.- Concluded.



o WGTO STATIC MARG

El FUEL * -0.1000
A STRUCTURE X 0.0000

lbs 0 PROPULSION + 0.0500
8.00

3.50 -
7.50 I

7.00

3.00 - 6.50

6.00

2.50 - 5.50 - -. -------------... I

E 5.00 -

G
H 2.00- 4.50
T

4.00 -

1 3.50 -
0 1.50 -
0O 3.00

2.50 -
1.002

2.00 - ..------E------.. ------

1.50 - ..------- ------- ---.----

.50 - 1.00 -

0.50 -

o - 0.00
-0 12 -0! 08 '-0!04' 0!00' 0!04' 0 08

STATIC MARG

(a) Weights.

Figure 16.- Effect of static margin.
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STATIC MARG

o -0.1000
1 0.0000
A 0.0500

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 2.00 -

.50
1.50 - S 1.50

P
S E
p C
E 1.00 1.00
C .25 -

I 0.50 0.50 -
C 00

0 0 0.00 E 0.00
R

-0.50 - 1 -0.50 -

1 -. 25 0

I-2 -1.00 0 -1.00

-1.50 - -1.50
-.50 - t

-2.00 -2.00-2. 00'10 00'20!00'30!00'40 - 2.00 o. od '6 Od 12.od lod
TURN RATE TURN RATE

(b) Combat performance.

Figure 16.- Concluded.
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o WGTO V TAIL SIZE

o) FUEL * 0.0500
A STRUCTURE X 0.1000

lbs O PROPULSION + 0.2000kg
8.00

3.50 I
7.50

7.00

3.00- 6.50 -

6.00 -

2.50- 5.50- .-.--.
wE 5.00 -
I
G 4.50 -H 2.00-

T 4.00 -

3.50 -
0 1. 50 

3.50

0 3.00 -
0

2.50 *

1.50 ...... ......

.50- 1.00 - ---... .----- *

0.50 -

0 - 0.000- 0.00 005 0 10 015 0!20 0 25 030 30
V TAIL SIZE

(a) Weights.

Figure 17.- Effect of vertical-surface size.
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V TAIL SIZE

o 0.0500
g 0.1000
A 0.2000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 - 2.00 -

.50-
1.50 - S 1.50 -

P

S C
P 1.00 - 1. 00
E * F
C 025- I

I C

I 0.50 0.50 -
C 0
P 0.00

0 0 - 0.00 ER 0.00
w R
E 1

-0.50 1 -0.50 -

S%0

1 -. 25- 0
0 -1.00 0 -1.00 -
0 i
0 *

-1.50 -1.50

-2. 0 0 0' 10 00'20! 00' 30!00' 4  
0 0 0

- 2 . 0 00d ' 6od 2! od eod
TURN RATE TURN RATE

(b) Combat performance.

Figure 17.- Concluded.
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o WGTO CL/CL NOM
El FUEL * 0.9000
A STRUCTURE X 1.0000

lbs 0 PROPULSION + 1.1000kg 8.00 
-

3.50 -
7.50 -

7.00 -

3.00- 6.50 -

6.00 -..

2.50- 5.50 -
E 5.00 - "
I
G 4.50 -H 2.00-

4.00 -

1 3.50 -
0 1.50-
0 3.00 -
0

2.50 -
1.00 - El....2.00 

...

1.50 - .

.50 - 1.00 - . ..........

0.50 -

0 - 0.00 80 ' 090 ' 1!00 ' I~09 ' 1120
CL/CL NOM

(a) Weights.

Figure 18.- Effect of a change in lift coefficient.
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CL/CL NOM

o 0.9000
g 1.0000

A 1.1000

m/sec ft/sec MACH NO. = 0.9 MACH NO. = 1.2

1.00 - 2.00 -
.25

0.50 sS 050 S 1.50 -
P P
E E
C 0 0.00-
I I 1.00 -
F F
I -0.50 - I
C I

-. 25- 0.50o

R -.50- -1.50 0.00

-2.00 -
1 1 -0.50 -%
0 0
0 -75 -2.50 8 -

0-1.00 -

-3.00 -

-1.00 - -1.50 -
-3.50 -

-4.00 -2.00 - -T
0-4. 00' 10!00'20!00'3000'4000 ood 's.od '12!od e.sod

TURN RATE TURN RATE

(b) Combat performance.

Figure 18.- Continued.
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m/sec ft/sec

1000 -
250 - 1 PSlg

0- 0

PS

-250 -1000...
-1000 - ...

-500 -

-2000 - Maximum instantaneous turn rate

-3000

14

12 -

4s
10 Sustained turn rate

8-

6

20

15

O 10 -Maximum instantaneous turn rate

5--------t----
Sustained turn rate

0

Time, sec L ------- - - -

60L Acceleration time - M = 0.9 to 1.6

.9 1.0 1.1
CL/CL nominal

(b) Combat performance (concluded).

Figure 18.- Concluded.
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SWGTO COO/COO NOM

E FUEL * 0.9000

A STRUCTURE X 1.0000

lbs 0 PROPULSION + 1.1000
kg

8.00 -
3.50 I

7.50 -

7.00 -

3.00 - 6.50 I

6.00 - ,

2.50 -5.50-

E 5.00
I
G 4.50 -H 2.00 -
T

4.00 -

3.50 -
0 1.50 3.50
0 3.00 -
0D

2.50 -
1.00 -

2.00 - A t

1.50 - -'"
a--- --

.50 - 1.00 ---. 4,

0.50 -

0 - 0.00 0.80 ' 090 ' 1!00 109 ' 1120
CO/C0O NOM

(a) Weights.

Figure 19.- Effect of a change in zero-lift drag coefficient.
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COO/COO NOM

0 0.9000
1 1.0000
A 1.1000

ft/see MACH NO. = 0.9 MACH NO. = 1.2

2.00 - 2.00 -
r/sec

.50 1.50 - S 1.50-
P

S E
s C

E 1.00- I 1.00-
C .25 1I C
F C
I 0.50 0.50

O 0 0.00 E 0.00
w
R *S

-0.50 1 -0.50 -

-.500

1 -. 25 0
0 -1.00 1.00

-50 -1.50 
-1.50

-2.00oo -2.000.00 1000 20!00'30 00oo'4000 0O o 's o 12od 0 8o
TURN RATE TURN RATE

(b) Combat performance.

Figure 19.- Continued.
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m/sec ft/sec

1000 -
250 1000 Pg

--

0- 0-

PS

-250 -
-1000 - -------- ----

Maximum instantaneous turn rate

-500 -
-2000

14-

12-

6s 10 - Sustained turn rate

6

20

15-
Maximum instantaneous turn rate

S 10 -

5- - ---------- ----
Sustained turn rate

0-

120
M = 0.9

100 --- M = 1.2

Time, sec 80 -

60 - Acceleration time - M = 0.9 to 1.6

40

.9 1.0 1.1

CDo/CDo nominal

(b) Combat performance (concluded).

Figure 19.- Concluded.
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0 WGTO COL/COL NOM
r0 FUEL * 0.9000
A STRUCTURE X 1.0000

lbs 0 PROPULSION + 1.1000
8. 00

3.50 I
7.50

I

7.00
3.00 6.50 i

6.00 -

2.50 5.50 - ...

E 5.00 -

H 2.00 4.50

4.00

1 3.50
0 1. 50 -
0 3.00 -

2.50 -
1.00 2 0

2.00 - .

1.50 .....------.. ........--

* 5 0 - 1 . 0 0 -.. ..... . . I0.50 I

0- 0. 00
0 .80 ' 0.90 ' 1 00 ' 109 1120 I

COL/COL NOM

(a) Weights.

Figure 20.- Effect of a change in drag-due-to-lift coefficient.
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CDL/CDL NOM

0 0.9000
s 1.0000
A 1.1000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

/sec 2.00 - 2.00 -

S50-
1.50 - S 1.50 -

P
s E
P C
E 1.00 I 1.00

C .25-
F C
I 0.50 0.50 -
C 0

P w
o - 0.00 E

-0.50 -0.50 !

0 -1.00 
0 

.

S1 -.25- I

-1.50 -- 1.50 -
-2.00 ', -. 00-. 50 -1

0-2. 00' 1o 00'20! 00'30 F001401 -0 0o 0o ood sod 2! od 0e'od
TURN RATE TURN RATE

(b) Combat performance.

Figure 20.- Continued.
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m/sec ft/sec

250 - 000 PSlg

0- 0

PS

-250 - -1000 - ... ...

Maximum instantaneous turn rate

-500 -

-2000 -

14 -

12-

s 10 Sustained turn rate

8-

s +o -

6 M =0.9

20 M = 1.2

15 I
Maximum instantaneous turn rate

a 10___

5 - - - - -- - --- I--
Sustained turn rate

0-

80
Time, sec - --

60 L Acceleration time - M = 0.9 to 1.6

.9 1.0 1.1

CDL/CDL nominal

(b) Combat performance (concluded).

Figure 20.-Concluded.
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kg lbs

7000 -

3000 -

6000ooo

2500 -

5000

2000

4000 -

1500

3000 -

1000 - Fuel

2000 -2000 I Structures

500 1- 000 - Propulsion

0 0 -

I I I I I I I
.7 .8 .9 1.0 1.1 1.2 1.3

CDow/CDow nominal

(a) Weights.

Figure 21 .- Effect of a change in weapons drag coefficient.
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CDow/CDow nominal

0.7

1.0

1.3

m/sec ft/sec M = 0.9 M = 1.2

1000
250

SO- 0

-50

-2000 I I I 1 I
0 10 20 30 0 10 20

Turn rate

(b) Combat performance.

Figure 21.- Concluded.
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WT FIX EQP

0 WGTO kg lbs
E1 FUEL * 45.4 (100.0)
A STRUCTURE X 226.8 (500.0)

lbs 0 PROPULSION + 340.2 (750.0)
kg

8.00 -
3.50 -

7.50 -

7.00 -

3.00 - 6.50 -

6.00 -

2.50 - 5.50 - I

E 5.00 I

H 2.00 4.50-
T "

4.00 -

00 3.00

2.50 -

2.00 -.00-

1.50 .--. .A - -

.50- 1.00 -*

0.50 -

0 - 0.00
S- o 0010! 06'30! 06 ' 5 006 '7 006 lbs

I I I I I
0 100 200 300 400 kg

WT FIX EQP

(a) Weights.

Figure 22.- Effect of weight of fixed equipment.
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WT FIX EQP
kg lbs

o 45.4 (loo.o)
N 226.8 (500.0)
A 340.2 (750.0)

ft/see MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 - 2.00 -

-50 -
1.50 - S 1.50 -

P
s E
P C
E 1.00 - 1.00
C .25 -
F C

S0.50 0.50 -
C a

. w

0 0 -1.00 0-1.00

-1.50 1 -1.50
-. 0

-2.0 00' 1000'20,00' 3000 4 01. 00 - 20  o '6s od '12 od e Cod
TURN RATE TURN RATE

(b) Combat performance.

Figure 22.- Concluded.

72



OEN FIX EOP

0 WGTO kg/ms  lb/ft 3

O FUEL * 320.4 (20.0)
A STRUCTURE X 480.6 (30.0)

kg lbs 0 PROPULSION + 800.9 (50.0)
3.50- 8.00 -

7.50 -

7.00

3.00- 6.50

6.00 -

2.50- 5.50 ---
w e-- I
E 5.00 -
I

H 2.00 - 4.50

4.00 -

1 3.50 -
S1.50-

0
0 3.00

2.50 -
1.00-

2.00 - .--...- -- -----

1.50 - A ------- -------

.50- 1.00 - ----------------

0.50 -

o0 - 0.00
15 00 25 00 ' 35 00 ' 4500 ' 55!00 lb/ft3

I I I I

300 600 900 kg/ms3

DEN FIX EOP

(a) Weights.

Figure 23.- Effect of density of fixed equipment.
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DEN FIX EOP

kg/m3  lb/ft
3

o 320.4 (20.0)
s 480.6 (30.0)
A 800.9 (50.0)

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

/sec 2.00 -
2.00 -

•50 - 1.50 - S 1.50
P
ES C

E 1.00 1.00
C .25 I
I C
F 05 P1 0.50 0.50

R

0-.50

0 -1.00 -1.00
0
0

-1.50 - -1.50
-. 50

-2.00 000' 10 0o0'20- 00' 3000' 4PO 00-2. 00 od 'od 2!od eod
TURN RATE TURN RATE

(b) Combat performance.

Figure 23.- Concluded.

74



kg lbs

7000 -

3000

6000ooo

2500

5000 -

Wg
2000 -

4000

1500 -

w 3000

1000
2000

Structure
500 1000 _

Propulsion

0 0o

I I I I I I I
.6 .7 .8 .9 1.0 1.1 1.2

Wwing/Wwing nominal

(a) Weights.

Figure 24.- Effect of a change in wing weight.
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Wwing/Wwing nominal

0.6

1.0

1.2

ft/sec M = 0.9 M = 1.2

1000
250

- 0 0
0)

o -250
P4 -1000

-500

-2000 I I I I I
0 10 20 30 0 10 20

Turn rate

(b) Combat performance.

Figure 24.- Concluded.

76



PAYLOAD

o WGTO kg lbs

E FUEL * 36.3 (80.0)
A STRUCTURE x 145.1 (320.0)

lbs 0 PROPULSION + 226.8 (500.0)
kg

8.00 -
3.50 I

7.50 -

7.00 -

3.00- 6.50 -

6.00 - ,

2.50- 5.50 -

E 5.00 -
I

H 2.00- 4.50 -

4.00 -

1 3.50 -
0 1.50-
0 3.00 -

2.50 -

.50 - 1.0 .

0.50 -

0 - . odoo od So! od 4oo od 5ao od -lbs
I I I I

0 100 200 300 kg
PAYLOAD

(a) Weights.

Figure 25.- Effect of weight of payload.
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PAYLOAD

kg Ibs

o 36.3 (80.0)
N 145.1 (320.0)
A 226.8 (500.0)

ft/see MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 - 2.00

.50
1.50 - S 1.50

P
S ES C

E 1.00 - 1.00
C .25- I
F C
1 0.50 P 0.50
C 0

a 0 0.00 -. oo

ER
-0.50 - -0.50

1 -. 25-
o -1.00 - -1.00 -

0

-1.50 - -1.50
-. 50-

-2.0oo ' 10 00'20!00'30 00'400 -2.o ' od 2!od e5'od
TURN RATE TURN RATE

(b) Combat performance.

Figure 25.- Concluded.
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SWGTO CRUISE M

E FUEL * 0.7000
A STRUCTURE X 0.8000

lbs 0 PROPULSION + 0.9000
kg

8.00
3.50 -

7.50 I

7.00

3.00 - 6.50 
I

6.00 - 0.

2.50 - 5.50 -- .. I
wI
E 5.00
I
G 4.50 -H 2.00 -
T

4.00 -

1 3.50 -
0 1.50
0 3.00 -
0

2.50 -
1.00 2.00 ...

1.50 ----..... ...........

.50 - 1.00 -

0.50

S- 0.00
0 .60 ' 070 ' 0!80 ' 0!90 ' 1!00

CRUISE M

(a) Weights.

Figure 26.- Effect of cruise Mach number.
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CRUISE M

0 0.7000
E0 0.8000
A 0.9000

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 - 2.00 -

050-
1.50 - S 1.50

P
E

E 1.00 1.00 -
C .25-

I 0.50 P 0.50
C 0
P E 0.00 _
0 - 0.00 - .00

E

-0.50 - 1 -0.50
0

1 -. 25 0 -.
0 -1.00 - 1.00 -
0

-1.50 - -1.50 -
-. 50-

-2. 0 0' 10 00'20! 00'30! 00'4 0 - 2. od 0 ' 6 d 12!od Ybeod
TURN RATE TURN RATE

(b) Combat performance.

Figure 26.- Concluded.
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CRUISE ALT.

0 WGTO m ft
E3 FUEL * 10668 (35000.0)
A STRUCTURE X 13716 (45000.0)

lbs 0 PROPULSION + 15240 (50000.0)

8.00 -
3.50 -

7.50 -

7.00 - Q

3.00- 6.50 - ',

6.00 -

2.50- 5.50 -

E 5. 00 - 0
I

H 2.00 4.50

4.00 -

1 3.50 -
0 1.50-
0 3.00 -
0

2.50 - rI.

2.00 - A. "' .. I

.50 - 1.00 --.-- '"--.....

0.50

o- 0.000 - oo.300o od edooo 'oo 6doo!oo' 54dooWdo ft

I I I I
10000 12000 14000 16000 m

CRUISE ALT.

(a) Weights.

Figure 27.- Effect of cruise altitude.
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CRUISE ALT.

m ft

o 10668 (35000.0)
* 13716 (45000.0)
A 15240 (50000.0)

ft/see MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 - 2.00 -

1.50 - S 1.50
P

S E
P C
E 1.00 - 1.00 -

C .25- 1
F C
I 0.50 0.50

P w
0 0 0.00 E 0

E

-0.50 -0.50 -

1 -. 25-
0 -1.00 -1.00 -
0

-1.50 -- 1.50 -
-.50-

-2.oo 00' 00oo'2 00o'3 00oo'4o0oo-2.0 0 od Gs!od 2! od ' od
TURN RATE TURN RATE

(b) Combat performance.

Figure 27.- Concluded.
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kg lbs

8000 -

3500

Wg
7000 -

3000 -

6000

2500 -

5000 -

4000 -

1500

Fuel

1000 2000 Structure

Propulsion

500 1000 -

o loooo0000 20000 30000 4ooo0000 50000 60000 ft

I I I I I
0 5000 10000 15000 20000 m

Combat altitude

(a) Weights.

Figure 28.- Effect of combat altitude.
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Combat altitude

m ft

6096 (20000)

9144 (30000)

- 5240 (50000)

m/sec ft/sec M = 0.9 M = 1.2

1000

250 -

0 0

-250
-- 1000

-500 -

CO -2000

-750

-3000

-1000 
-

-4ooo I I I I I
0 10 20 30 0 10 20

Turn rate

(b) Combat performance.

Figure 28.- Continued.
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m/sec ft/sec

1000
250 Pig

-0 - - M = 0.9

M = 1.2

-250 - Maximum instantaneous
-1000 12 - turn rate

-500 
10 -

-2000 8 -
Maximum

-750 - instantaneous NZ 6 -
turn rate

-3000 -4 Sustainedturn rate
-1000 -

-4000 - 0
Maximum instantaneous

25 - turn rate 35

20 - 30 -Maximum
instantaneous

--turn rate
15 25

10 - 20 -

Sustained 15
turn rate

0 10- /

300 5 -

200 0. Sustained turn rate

Time, sec 10

1O0 _-- I I I I
20000 30000 40000 50000 ft

Acceleration time - M = 0.9 to 1.6 1

o I I I

20000 30000 40000 50000 ft Combat altitude

I I I I

4000 8000 12000 16000 m

Combat altitude

(b) Combat performance (concluded).

Figure 28.- Concluded.
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kg lbs

4500 - 10000 -

9000 -9ooo -
4000 -

8000 -

3500 -

7000 -

3000 -

6000 -

w 2500 -

5000 -

2000 -

4000 -
Fuel

1500 -
3000 - Structures

1000 Propulsion
2000 -

500 - 1000 -

0 0

I I I I I I I
1.2 1.3 1.4 1.5 1.6 1.7 1.8

Combat Mach number

(a) Weights.

Figure 29.- Effect of supersonic combat Mach number.

86



Supersonic combat
Mach number

1.2

1.6

1.8

m/sec ft/secm/sec ft/se M = 0.9 M = Supersonic
1000

250

0-

P4

-250 -
S-1000

-500

-2000 I I I I I
0 10 20 30 0 10 20

Turn rate

(b) Combat performance.

Figure 29.- Continued.
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m/sec ft/sec.

1000-
250 PSlg

0- 0-

PS

-250
-1000 -Maximum instantaneous turn rate

-500

-2000 -

20 -

Maximum instantaneous turn rate

15 -

o 10 -

6 Sustained turn rate

5 -

12 - Maximum instantaneous turn rate

10 -

NZ  8 -

4

Maximum instantaneous turn rate

5 -Sustained turn rate

0 -

Acceleration time - M = 0.9 to 1.6
80

Time, sec

60

I I I I I I I
1.2 1.3 1.4 1.5 1.6 1.7 1.8

Combat Mach number

(b) Combat performance (M = supersonic) (concluded).

Figure 29.- Concluded.
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kg lbs

6000

2500 -

5000 -w

2000

4hooo

1500 -

w 3000 -

1000
2000 -

Structure

500 -1000 
Propulsion

o - o-

I I I I I I
.5 .6 .7 .8 .9 1.0

Combat Mach number

(a) Weights.

Figure 30.- Effect of subsonic combat Mach number.
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Subsonic combat
Mach number

0.6
0.7

m/sec ft/sec 0.9

1000 M = subsonic - M = 1.2

250

0 0O

-250 -
C) -1000

o -500 -

-2000

-750 -

I I I I I
-3000 0 10 20 30 0 10 20

Turn rato

(b) Combat performance.

Figure 30.- Continued.
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m/sec ft/sec

1000 -
250 Pslg

Maximum instantaneous
12 - turn rate

0 0 - 10 -

8 -

-250
-1000 - NZ 6

PS Maximum instantaneous 4 Sustained turn rate

-500 turn rate

-2000 - 2

-750 0

-3000 L- 40

35 Maximum instantaneous 35
turn rate

30 - 30
Maximum instantaneous

25 - 25 turn rate

20 a 20

15 -15

10 10

Acceleration time - . Sustained turn rate
80 M = 0.9 to 1.6  5-

Time, sec 6 0

I I I I I I I I

.6 .7 .8 .9 .6 .7 .8 .9

Combat Mach number Combat Mach number

(b) Combat performance (M = subsonic) (concluded).

Figure 30.- Concluded.
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COMB. RAO.

o WGTO km n. mi.
B FUEL * 185.2 (100.0)
A STRUCTURE x 370.4 (200.0)

kg lbs 0 PROPULSION + 740.8 (400.0)

9.00- 20.00 -

18.00 -
8.00

16.00
7.00

14.00 -

w 6.00-
E
I 12.00
H
T 5.00-

10.00 -

1 4.00-
0 8.00 00 ,

3.00-
6.00 - ,-

2.00 4.00 -

.oo- ,.oo ; -'"
1.00- 2.00 -- ..

0 0.00
50 00 '150 00 '250!00 '350!00 '450!00 n. mi.

I I I I I I
o 200 400 600 800 km

COMB. RAD.

(a) Weights.

Figure 3 1.- Effect of combat radius.
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COMB. RAO.

km n. mi.

0 185.2 (100.0)
N 370.4 (200.0)
A 740.8 (400.0)

ft/sec MACH NO. = 0.9 MACH NO. = 1.2

m/sec 2.00 - 2.00

50
1.50 - S 1.50 -

P

P1.00 - 1.00E F
C 25 -I
I C

1 0.50 P 0.50
C 0

0 0 - 0.00 E 000

-0.50 -0.50

1 -. 25 -
0 -1.00 -1.00 -
0

-1.50 -1.50 -
-. 50

-2-00 I200-2. 0 0.0OO'oIOO'20OO'30oo400o-20 0. od 'sod12! od lod
TURN RATE TURN RATE

(b) Combat performance.

Figure 31.- Concluded.
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kg lbs

5500 - 12000

Nominal
Number of turns

Supersonic Subsonic
Nominal 3 4

A 3 3 A
B 2 4

4500 - o000 C 2 2
D 1 1 B

9000 -
4000 -

C

8000 -

Wg 3500 -

7000 -

3000 -

6000 -

2500 -

5000

2000 -

000 -

1500 -

3000

1000 -

100 200 300 400 n. mi.

200 400 600 800 km

Combat radius

Figure 32.- Effect of number of combat turns and combat radius.
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